545 research outputs found

    Journalism: its place in the secondary school system.

    Full text link
    Thesis (M.A.)--Boston Universit

    Targeted youth support: Rapid Evidence Assessment of effective early interventions for youth at risk of future poor outcomes

    Get PDF
    This report describes the findings and methods of a systematic rapid evidence assessment (REA) of research relevant to interventions of interest to Targeted Youth Support. It was commissioned by the Department for Children, Schools and Families (DCSF) to inform the development of policy and practice in relation to this initiative

    The Origin of Nitrogen on Jupiter and Saturn from the 15^{15}N/14^{14}N Ratio

    Full text link
    The Texas Echelon cross Echelle Spectrograph (TEXES), mounted on NASA's Infrared Telescope Facility (IRTF), was used to map mid-infrared ammonia absorption features on both Jupiter and Saturn in February 2013. Ammonia is the principle reservoir of nitrogen on the giant planets, and the ratio of isotopologues (15^{15}N/14^{14}N) can reveal insights into the molecular carrier (e.g., as N2_2 or NH3_3) of nitrogen to the forming protoplanets, and hence the source reservoirs from which these worlds accreted. We targeted two spectral intervals (900 and 960 cm−1^{-1}) that were relatively clear of terrestrial atmospheric contamination and contained close features of 14^{14}NH3_3 and 15^{15}NH3_3, allowing us to derive the ratio from a single spectrum without ambiguity due to radiometric calibration (the primary source of uncertainty in this study). We present the first ground-based determination of Jupiter's 15^{15}N/14^{14}N ratio (in the range from 1.4×10−31.4\times10^{-3} to 2.5×10−32.5\times10^{-3}), which is consistent with both previous space-based studies and with the primordial value of the protosolar nebula. On Saturn, we present the first upper limit on the 15^{15}N/14^{14}N ratio of no larger than 2.0×10−32.0\times10^{-3} for the 900-cm−1^{-1} channel and a less stringent requirement that the ratio be no larger than 2.8×10−32.8\times10^{-3} for the 960-cm−1^{-1} channel (1σ1\sigma confidence). Specifically, the data rule out strong 15^{15}N-enrichments such as those observed in Titan's atmosphere and in cometary nitrogen compounds. To the extent possible with ground-based radiometric uncertainties, the saturnian and jovian 15^{15}N/14^{14}N ratios appear indistinguishable, implying that 15^{15}N-enriched ammonia ices could not have been a substantial contributor to the bulk nitrogen inventory of either planet, favouring the accretion of primordial N2_2 from the gas phase or as low-temperature ices.Comment: 33 pages, 19 figures, manuscript accepted for publication in Icaru

    Operational Insights into Analysing Team and Player Performance in Elite Rugby League: A Narrative Review with Case Examples

    Get PDF
    In professional team sports, like Rugby League, performance analysis has become an integral part of operational practices. This has helped practitioners gain deeper insight into phenomena like team and athlete behaviour and understanding how such behaviour may be influenced by various contextual factors. This information can then be used by coaches to design representative practice tasks, inform game principles and opposition strategies, and even support team recruitment practices. At the elite level, the constant evolution of sports technology (both hardware and software) has enabled greater access to information, making the role of the performance analyst even more valuable. However, this increase in information can create challenges regarding which variables to use to help guide decision-making, and how to present it in ways that can be utilised by coaches and other support staff. While there are published works exploring aspects of performance analysis in team sports like Rugby League, there is yet to be a perspective that explores the various operational uses of performance analysis in Rugby League, the addition of which could help guide the practices of emerging performance analysts in elite organisations like the Australian National Rugby League and the European Super League. Thus, this narrative review—with accompanying case examples—explores the various ways performance analysis can help address pertinent operational questions commonly encountered when working in high-performance sport

    The Effect of Different Decline Angles on the Biomechanics of Double Limb Squats and the Implications to Clinical and Training Practice

    Get PDF
    Bilateral decline squatting has been well documented as a rehabilitation exercise, however, little information exists on the optimum angle of decline. The aim of this study was to determine the ankle and knee angle, moments, the patellofemoral joint load, patellar tendon load and associated muscle activity while performing a double limb squat at different decline angles and the implications to rehabilitation. Eighteen healthy subjects performed double limb squats at 6 angles of declination: 0, 5, 10, 15, 20 and 25 degrees. The range of motion of the knee and ankle joints, external moments, the patellofemoral/patellar tendon load and integrated EMG of gastrocnemius, tibialis anterior, rectus femoris and biceps femoris were evaluated. As the decline angle increased up to 20 degrees, the range of motion possible at the ankle and knee increased. The joint moments showed a decrease at the ankle up to 15 degrees and an increase at the knee up to 25 degrees, indicating a progressive reduction in loading around the ankle with a corresponding increase of the load in the patellar tendon and patellofemoral joint. These trends were supported by a decrease in tibialis anterior activity and an increase in the rectus femoris activity up to 15 degrees declination. However, gastrocnemius and biceps femoris activity increased as the decline angle increased above 15 degrees. The action of gastrocnemius and biceps femoris stabilises the knee against an anterior displacement of the femur on the tibia. These findings would suggest that there is little benefit in using a decline angle greater than 15-20 degrees unless the purpose is to offer an additional stability challenge to the knee joint

    First Operation of a Resistive Shell Liquid Argon Time Projection Chamber -- A new Approach to Electric-Field Shaping

    Get PDF
    We present a new technology for the shaping of the electric field in Time Projection Chambers (TPCs) using a carbon-loaded polyimide foil. This technology allows for the minimisation of passive material near the active volume of the TPC and thus is capable to reduce background events originating from radioactive decays or scattering on the material itself. Furthermore, the high and continuous electric resistivity of the foil limits the power dissipation per unit area and minimizes the risks of damages in the case of an electric field breakdown. Replacing the conventional field cage with a resistive plastic film structure called 'shell' decreases the number of components within the TPC and therefore reduces the potential points of failure when operating the detector. A prototype liquid argon (LAr) TPC with such a resistive shell and with a cathode made of the same material was successfully tested for long term operation with electric field values up to about 1.5 kV/cm. The experiment shows that it is feasible to successfully produce and shape the electric field in liquefied noble-gas detectors with this new technology.Comment: 13 page

    Measurement of space charge effects in the MicroBooNE LArTPC using cosmic muons

    Get PDF
    Large liquid argon time projection chambers (LArTPCs), especially those operating near the surface, are susceptible to space charge effects. In the context of LArTPCs, the space charge effect is the build-up of slow-moving positive ions in the detector primarily due to ionization from cosmic rays, leading to a distortion of the electric field within the detector. This effect leads to a displacement in the reconstructed position of signal ionization electrons in LArTPC detectors ("spatial distortions"), as well as to variations in the amount of electron-ion recombination experienced by ionization throughout the volume of the TPC. We present techniques that can be used to measure and correct for space charge effects in large LArTPCs by making use of cosmic muons, including the use of track pairs to unambiguously pin down spatial distortions in three dimensions. The performance of these calibration techniques are studied using both Monte Carlo simulation and MicroBooNE data, utilizing a UV laser system as a means to estimate the systematic bias associated with the calibration methodology

    A New Concept for Kilotonne Scale Liquid Argon Time Projection Chambers

    Get PDF
    We develop a novel Time Projection Chamber (TPC) concept suitable for deployment in kilotonne-scale detectors, with a charge-readout system free from reconstruction ambiguities, and a robust TPC design that reduces high-voltage risks while increasing the coverage of the light-collection system and maximizing the active volume. This novel concept could be used as a far detector module in the Deep Underground Neutrino Experiment (DUNE). For the charge-readout system, we used the charge-collection pixels and associated application-specific integrated circuits currently being developed for the liquid argon (LAr) component of the DUNE Near Detector design, ArgonCube. In addition, we divided the TPC into a number of shorter drift volumes, reducing the total voltage used to drift the ionization electrons, and minimizing the stored energy per TPC. Segmenting the TPC also contains scintillation light, allowing for precise trigger localization and a more expansive light-readout system. Furthermore, the design opens the possibility of replacing or upgrading components. These augmentations could substantially improve the reliability and the sensitivity, particularly for low-energy signals, in comparison to traditional monolithic LArTPCs with projective-wire charge readouts
    • …
    corecore