91 research outputs found

    Transition metal catalyzed manipulation of non-polar carbon–hydrogen bonds for synthetic purpose

    Get PDF
    The direct addition of ortho C–H bonds in various aromatic compounds such as ketones, esters, imines, imidates, nitriles, and aldehydes to olefins and acetylenes can be achieved with the aid of transition metal catalysts. The ruthenium catalyzed reaction is usually highly efficient and useful as a general synthetic method. The coordination to the metal center by a heteroatom in a directing group such as carbonyl and imino groups in aromatic compounds is the key step in this process. Mechanistically, the reductive elimination to form a C–C bond is the rate-determining step, while the C–H bond cleavage step is not

    Evaluation of carbon dioxide absorption by amine based absorbent

    Get PDF
    AbstractToshiba has developed amine based aqueous solution (Toshiba solvent 1, TS-1) that can significantly reduce CO2 regeneration energy compared with general 30 wt% monoethanolamine (MEA) aqueous solution and reported the results of the pilot plant of 10 t- CO2/day recovery from the flue gas of a coal- fired power plant. In order to reduce the CO2 regeneration energy further, we have developed new hindered amine based absorbent, Absorbent-A.In the present work, Absorbent-A was evaluated for CO2 absorption properties by laboratory scale apparatus. Absorbent-A was found to have the high CO2 absorption capacity and the low reaction heat. Furthermore, the CO2 regeneration energy of Absorbent-A was 45% less than that of general 30 wt% MEA aqueous solution.In future, we will additionally evaluate Absorbent-A in order to test in the pilot plant

    Disorganization of Semantic Brain Networks in Schizophrenia Revealed by fMRI

    Get PDF
    OBJECTIVES: Schizophrenia is a mental illness that presents with thought disorders including delusions and disorganized speech. Thought disorders have been regarded as a consequence of the loosening of associations between semantic concepts since the term "schizophrenia" was first coined by Bleuler. However, a mechanistic account of this cardinal disturbance in terms of functional dysconnection has been lacking. To evaluate how aberrant semantic connections are expressed through brain activity, we characterized large-scale network structures of concept representations using functional magnetic resonance imaging (fMRI). STUDY DESIGN: We quantified various concept representations in patients' brains from fMRI activity evoked by movie scenes using encoding modeling. We then constructed semantic brain networks by evaluating the similarity of these semantic representations and conducted graph theory-based network analyses. STUDY RESULTS: Neurotypical networks had small-world properties similar to those of natural languages, suggesting small-worldness as a universal property in semantic knowledge networks. Conversely, small-worldness was significantly reduced in networks of schizophrenia patients and was correlated with psychological measures of delusions. Patients' semantic networks were partitioned into more distinct categories and had more random within-category structures than those of controls. CONCLUSIONS: The differences in conceptual representations manifest altered semantic clustering and associative intrusions that underlie thought disorders. This is the first study to provide pathophysiological evidence for the loosening of associations as reflected in randomization of semantic networks in schizophrenia. Our method provides a promising approach for understanding the neural basis of altered or creative inner experiences of individuals with mental illness or exceptional abilities, respectively

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe


    No full text