496 research outputs found

    How the interbank market becomes systemically dangerous: an agent-based network model of financial distress propagation

    Get PDF
    Assessing the stability of economic systems is a fundamental research focus in economics, that has become increasingly interdisciplinary in the currently troubled economic situation. In particular, much attention has been devoted to the interbank lending market as an important diffusion channel for financial distress during the recent crisis. In this work we study the stability of the interbank market to exogenous shocks using an agent-based network framework. Our model encompasses several ingredients that have been recognized in the literature as pro-cyclical triggers of financial distress in the banking system: credit and liquidity shocks through bilateral exposures, liquidity hoarding due to counterparty creditworthiness deterioration, target leveraging policies and fire-sales spillovers. But we exclude the possibility of central authorities intervention. We implement this framework on a dataset of 183 European banks that were publicly traded between 2004 and 2013. We document the extreme fragility of the interbank lending market up to 2008, when a systemic crisis leads to total depletion of market equity with an increasing speed of market collapse. After the crisis instead the system is more resilient to systemic events in terms of residual market equity. However, the speed at which the crisis breaks out reaches a new maximum in 2011, and never goes back to values observed before 2007. Our analysis points to the key role of the crisis outbreak speed, which sets the maximum delay for central authorities intervention to be effective

    Electrophoretic Deposition of WS2 Flakes on Nanoholes Arrays—Role of Used Suspension Medium

    Get PDF
    Here we optimized the electrophoretic deposition process for the fabrication of WS2 plasmonic nanohole integrated structures. We showed how the conditions used for site-selective deposition influenced the properties of the deposited flakes. In particular, we investigated the effect of different suspension buffers used during the deposition both in the efficiency of the process and in the stability of WS2 flakes, which were deposited on an ordered arrays of plasmonic nanostructures. We observed that a proper buffer can significantly facilitate the deposition process, keeping the material stable with respect to oxidation and contamination. Moreover, the integrated plasmonic structures that can be prepared with this process can be applied to enhanced spectroscopies and for the preparation of 2D nanopores

    High-temperature antiferromagnetism in molecular semiconductor thin films and nanostructures

    Get PDF
    The viability of dilute magnetic semiconductors in applications is linked to the strength of the magnetic couplings, and room temperature operation is still elusive in standard inorganic systems. Molecular semiconductors are emerging as an alternative due to their long spin-relaxation times and ease of processing, but, with the notable exception of vanadium-tetracyanoethylene, magnetic transition temperatures remain well below the boiling point of liquid nitrogen. Here we show that thin films and powders of the molecular semiconductor cobalt phthalocyanine exhibit strong antiferromagnetic coupling, with an exchange energy reaching 100 K. This interaction is up to two orders of magnitude larger than in related phthalocyanines and can be obtained on flexible plastic substrates, under conditions compatible with routine organic electronic device fabrication. Ab initio calculations show that coupling is achieved via superexchange between the singly occupied a(1g) ([Image: see text]) orbitals. By reaching the key milestone of magnetic coupling above 77 K, these results establish quantum spin chains as a potentially useable feature of molecular films

    Re-sequencing of the APOAI promoter region and the genetic association of the -75G > A polymorphism with increased cholesterol and low density lipoprotein levels among a sample of the Kuwaiti population

    Get PDF
    BACKGROUND: APOAI, a member of the APOAI/CIII/IV/V gene cluster on chromosome 11q23-24, encodes a major protein component of HDL that has been associated with serum lipid levels. The aim of this study was to determine the genetic association of polymorphisms in the APOAI promoter region with plasma lipid levels in a cohort of healthy Kuwaiti volunteers. METHODS: A 435 bp region of the APOAI promoter was analyzed by re-sequencing in 549 Kuwaiti samples. DNA was extracted from blood taken from 549 healthy Kuwaiti volunteers who had fasted for the previous 12 h. Univariate and multivariate analysis was used to determine allele association with serum lipid levels. RESULTS: The target sequence included a partial segment of the promoter region, 5’UTR and exon 1 located between nucleotides −141 to +294 upstream of the APOAI gene on chromosome 11. No novel single nucleotide polymorphisms (SNPs) were observed. The sequences obtained were deposited with the NCBI GenBank with accession number [GenBank: JX438706]. The allelic frequencies for the three SNPs were as follows: APOAI rs670G = 0.807; rs5069C = 0.964; rs1799837G = 0.997 and found to be in HWE. A significant association (p < 0.05) was observed for the APOAI rs670 polymorphism with increased serum LDL-C. Multivariate analysis showed that APOAI rs670 was an independent predictive factor when controlling for age, sex and BMI for both LDL-C (OR: 1.66, p = 0.014) and TC (OR: 1.77, p = 0.006) levels. CONCLUSION: This study is the first to report sequence analysis of the APOAI promoter in an Arab population. The unexpected positive association found between the APOAI rs670 polymorphism and increased levels of LDL-C and TC may be due to linkage disequilibrium with other polymorphisms in candidate and neighboring genes known to be associated with lipid metabolism and transport

    Tectonic setting of the kenya rift in the nakuru area, based on geophysical prospecting

    Get PDF
    In this paper, we present results of tectonic and geophysical investigations in the Kenya Rift valley, in the Nakuru area. We compiled a detailed geological map of the area based on published earlier works, well data and satellite imagery. The map was then integrated with original fieldwork and cross sections were constructed. In key areas, we then performed geophysical survey using Electrical Resistivity Tomography (ERT), Hybrid Source AudioMagnetoTelluric (HSAMT), and single station passive seismic measurements (HVSR). In the study area, a volcano-sedimentary succession of the Neogene-Quaternary age characterized by basalts, trachytes, pyroclastic rocks, and tephra with intercalated lacustrine and fluvial deposits crops out. Faulting linked with rift development is evident and occurs throughout the area crosscutting all rock units. We show a rotation of the extension in this portion of the Kenya rift with the NE-SW extension direction of a Neogene-Middle Pleistocene age, followed by the E-Wextension direction of anUpper Pleistocene-Present age. Geophysical investigations allowed to outline main lithostratigraphic units and tectonic features at depth and were also useful to infer main cataclasites and fractured rock bodies, the primary paths for water flow in rocks. These investigations are integrated in a larger EU H2020 Programme aimed to produce a geological and hydrogeological model of the area to develop a sustainable water management system

    Increased luminescence efficiency by synergistic exploitation of lipo/hydrophilic co-solvency and supramolecular design

    Get PDF
    We use steady-state and time-resolved photoluminescence (PL) spectroscopy to investigate the luminescent properties of a sulfonated poly(diphenylenevinylene) lithium salt (PDV.Li) in water/propanol solutions at different concentrations, with a view to assessing its aggregation behavior. In particular, we compare results from uninsulated PDV.Li and cyclodextrin-threaded PDV.Li polyrotaxane (PDV.Li⊂β-CD). We find that addition of 1-propanol (≥20 weight%) leads to a significant blue-shift (of ∼0.20 eV) of the PL spectra, that we assign to suppressed interchain aggregation in PDV.Li solutions, with a concomitant fourfold increase in the fluorescence quantum efficiency (i.e. from 14 to 60%). Surprisingly, a moderate concentration of propanol increases further the luminescence efficiency even for PDV.Li⊂β-CD, whose supramolecular encapsulation already provides a shield against aggregation. Indeed, addition of propanol reduces the solvent polarity, and therefore helps solubilizing these materials that are still largely aromatic in nature. Interestingly, however, both uninsulated PDV.Li and polyrotaxane solutions exhibit signs of aggregation at high propanol fraction (>70%) with a distinctively weaker coupling than that of interchain states in PDV.Li at high water concentration and in pure water in particular. While we ascribe such behavior to a poor solvation of the polar moieties, we also report a different strength of aggregation for PDV.Li and PDV.Li⊂β-CD that can be attributed to the presence of the cyclodextrin rings. In PDV.Li⊂β-CD hydrogen bonding between the cyclodextrin rings may lead to closer packing between the polymer chains. We therefore suggest that a content of propanol between 30 and 70% provides a good balance of hydrophobic and hydrophilic interactions both for PDV.Li and PDV.Li⊂β-CD

    A simulation tool for MRPC telescopes of the EEE project

    Full text link
    The Extreme Energy Events (EEE) Project is mainly devoted to the study of the secondary cosmic ray radiation by using muon tracker telescopes made of three Multigap Resistive Plate Chambers (MRPC) each. The experiment consists of a telescope network mainly distributed across Italy, hosted in different building structures pertaining to high schools, universities and research centers. Therefore, the possibility to take into account the effects of these structures on collected data is important for the large physics programme of the project. A simulation tool, based on GEANT4 and using GEMC framework, has been implemented to take into account the muon interaction with EEE telescopes and to estimate the effects on data of the structures surrounding the experimental apparata.A dedicated event generator producing realistic muon distributions, detailed geometry and microscopic behavior of MRPCs have been included to produce experimental-like data. The comparison between simulated and experimental data, and the estimation of detector resolutions is here presented and discussed

    Feasibility and reference values of left atrial longitudinal strain imaging by two-dimensional speckle tracking

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The role of speckle tracking in the assessment of left atrial (LA) deformation dynamics is not established. We sought to determine the feasibility and reference ranges of LA longitudinal strain indices measured by speckle tracking in a population of normal subjects.</p> <p>Methods</p> <p>In 60 healthy individuals, peak atrial longitudinal strain (PALS) and time to peak longitudinal strain (TPLS) were measured using a 12-segment model for the left atrium. Values were obtained by averaging all segments (global PALS and TPLS) and by separately averaging segments measured in the two apical views (4- and 2-chamber average PALS and TPLS).</p> <p>Results</p> <p>Adequate tracking quality was achieved in 97% of segments analyzed. Inter and intra-observer variability coefficients of measurements ranged between 2.9% and 5.4%. Global PALS was 42.2 ± 6.1% (5–95° percentile range 32.2–53.2%), and global TPLS was 368 ± 30 ms (5–95° percentile range 323–430 ms). The 2-chamber average PALS was slightly higher than the 4-chamber average PALS (44.3 ± 6.0% vs 40.1 ± 7.9%, p < 0.0001), whereas no differences in TPLS were found (p = 0.93).</p> <p>Conclusion</p> <p>Speckle tracking is a feasible technique for the assessment of longitudinal myocardial LA deformation. Reference ranges of strain indices were reported.</p

    Noninvasive monitoring of myocardial function after surgical and cytostatic therapy in a peritoneal metastasis rat model: assessment with tissue Doppler and non-Doppler 2D strain echocardiography

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>We sought to evaluate the impact of different antineoplastic treatment methods on systolic and diastolic myocardial function, and the feasibility estimation of regional deformation parameters with non-Doppler 2D echocardiography in rats.</p> <p>Background</p> <p>The optimal method for quantitative assessment of global and regional ventricular function in rats and the impact of complex oncological multimodal therapy on left- and right-ventricular function in rats remains unclear.</p> <p>Methods</p> <p>90 rats after subperitoneal implantation of syngenetic colonic carcinoma cells underwent different onclogical treatment methods and were diveded into one control group and five treatment groups (with 15 rats in each group): group 1 = control group (without operation and without medication), group 2 = operation group without additional therapy, group 3 = combination of operation and photodynamic therapy, group 4 = operation in combination with hyperthermic intraoperative peritoneal chemotherapy with mitomycine, and group 5 = operation in combination with hyperthermic intraoperative peritoneal chemotherapy with gemcitabine, group 6 = operation in combination with taurolidin i.p. instillation. Echocardiographic examination with estimation of wall thickness, diameters, left ventricular fractional shortening, ejection fraction, early and late diastolic transmitral and myocardial velocities, radial and circumferential strain were performed 3–4 days after therapy.</p> <p>Results</p> <p>There was an increase of LVEDD and LVESD in all groups after the follow-up period (P = 0.0037). Other LV dimensions, FS and EF as well as diastolic mitral filling parameters measured by echocardiography were not significantly affected by the different treatments. Values for right ventricular dimensions and function remained unchanged, whereas circumferential 2D strain of the inferior wall was slightly, but significantly reduced under the treatment (-18.1 ± 2.5 before and -16.2 ± 2.9 % after treatment; P = 0.001) without differences between the single treatment groups.</p> <p>Conclusion</p> <p>It is feasible to assess dimensions, global function, and regional contractility with echocardiography in rats under different oncological therapy. The deformation was decreased under overall treatment without influence by one specific therapy. Therefore, deformation assessment with non-Doppler 2D strain echocardiography is more sensitive than conventional echocardiography for assessing myocardial dysfunction in rats under oncological treatment.</p

    Real-time evaluation of longitudinal peak systolic strain (speckle tracking measurement) in left and right ventricles of athletes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Strain, and particularly Longitudinal Peak Systolic Strain (LPSS), plays a role in investigating the segmental and overall contractility of the heart which is a particularly interesting feature in athletes in whom regular training determines several morphological and functional modifications in both the ventricles, that normally work at different loads. Speckle tracking techniques assess the LPSS of LV and RV from B-mode imaging in real time, with uniform accuracy in all segments, and can verify the possible dissimilar segmental contributions of the two chambers to overall myocardial contraction. The aim of the study is to quantify the LPSS in real time in both the ventricles in order to estimate any possible different deformation properties in them during a systolic period.</p> <p>Methods</p> <p>32 subjects (20 athletes and 18 controls) were submitted to a standard echocardiographic examination at rest and after a Hand Grip (HG) stress. From a four-chamber-view image, the LPSS parameter was measured with Speckle Tracking analysis in the basal and medium-apical segments of the two ventricles, at rest and after HG.</p> <p>Results</p> <p>In both athletes and controls, LPSS values were significantly higher in the RV of athletes (RV LPSS <sup>medium-apical </sup>-23.87 ± 4.94; <sup>basalfreewall </sup>-25.04 ± 4.12 at rest) and controls (RV LPSS<sup>medium-apical </sup>-25.21 ± 4.97; <sup>basalfreewall </sup>-28.69 ± 4.62 at rest) than in the LV of both (athletes LV LPSS <sup>medium-apical </sup>-18.14 ± 4.16; <sup>basallateralwall </sup>-16.05 ± 12.32; controls <sup>medium-apical </sup>-18.81 ± 2.64; <sup>basallateralwall </sup>-19.74 ± 3.84) With the HG test a significant enhancement of the LPSS(with P < .05) in the medium-apical segments of LV and RV was evident, but only in athletes; there was no modification of the standard echo-parameters in either group.</p> <p>Conclusion</p> <p>ST analysis is an easy method for investigating the contractility of the RV through deformation parameters, showing greater involvement of the RV than LV at rest. In athletes only, after isometric stress the two ventricles show particular myocardial deformation properties of the regions around the apex where the curvature of the wall is more marked. The clinical application of this new approach in athletes and normal subjects requires further investigation.</p
    corecore