9,681 research outputs found

    On the half-Cauchy prior for a global scale parameter

    Get PDF
    This paper argues that the half-Cauchy distribution should replace the inverse-Gamma distribution as a default prior for a top-level scale parameter in Bayesian hierarchical models, at least for cases where a proper prior is necessary. Our arguments involve a blend of Bayesian and frequentist reasoning, and are intended to complement the original case made by Gelman (2006) in support of the folded-t family of priors. First, we generalize the half-Cauchy prior to the wider class of hypergeometric inverted-beta priors. We derive expressions for posterior moments and marginal densities when these priors are used for a top-level normal variance in a Bayesian hierarchical model. We go on to prove a proposition that, together with the results for moments and marginals, allows us to characterize the frequentist risk of the Bayes estimators under all global-shrinkage priors in the class. These theoretical results, in turn, allow us to study the frequentist properties of the half-Cauchy prior versus a wide class of alternatives. The half-Cauchy occupies a sensible 'middle ground' within this class: it performs very well near the origin, but does not lead to drastic compromises in other parts of the parameter space. This provides an alternative, classical justification for the repeated, routine use of this prior. We also consider situations where the underlying mean vector is sparse, where we argue that the usual conjugate choice of an inverse-gamma prior is particularly inappropriate, and can lead to highly distorted posterior inferences. Finally, we briefly summarize some open issues in the specification of default priors for scale terms in hierarchical models

    Good, great, or lucky? Screening for firms with sustained superior performance using heavy-tailed priors

    Full text link
    This paper examines historical patterns of ROA (return on assets) for a cohort of 53,038 publicly traded firms across 93 countries, measured over the past 45 years. Our goal is to screen for firms whose ROA trajectories suggest that they have systematically outperformed their peer groups over time. Such a project faces at least three statistical difficulties: adjustment for relevant covariates, massive multiplicity, and longitudinal dependence. We conclude that, once these difficulties are taken into account, demonstrably superior performance appears to be quite rare. We compare our findings with other recent management studies on the same subject, and with the popular literature on corporate success. Our methodological contribution is to propose a new class of priors for use in large-scale simultaneous testing. These priors are based on the hypergeometric inverted-beta family, and have two main attractive features: heavy tails and computational tractability. The family is a four-parameter generalization of the normal/inverted-beta prior, and is the natural conjugate prior for shrinkage coefficients in a hierarchical normal model. Our results emphasize the usefulness of these heavy-tailed priors in large multiple-testing problems, as they have a mild rate of tail decay in the marginal likelihood m(y)m(y)---a property long recognized to be important in testing.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS512 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Student Demand for Streaming Lecture Video: Emprical Evidence from Undergraduate Economics Classes

    Get PDF
    Real-time lectures recorded on video and streamed over the Internet are a useful supplement to non-classroom learning. However, because recording confines the instructor to the podium, the classroom experience is diminished when there is less social interaction. This study uses choice experiment data to estimate economics students' willingness to pay for streaming lecture video and instructor movement away from the podium. Results show a divide between students who like the flexibility of catching up on missed classes with video and students who do not. For this former group, video enhances the learning experience and students are willing to pay an additional $90 per course for video. An important source of streaming lecture video's value to students is its impact on performance. Knowledge equation estimates show a positive correlation between students' use of video and their cumulative final grade.
    • …