3 research outputs found

    Comparison of physical fitness between healthy and mild‐to‐moderate asthmatic children with exercise symptoms: A cross‐sectional study

    Get PDF
    .Objective Asthma is a chronic disease that may affect physical fitness, although its primary effects on exercise capacity, muscle strength, functionality and lifestyle, in children and adolescents, are still poorly understood. This study aimed to evaluate the differences in cardiorespiratory fitness, muscle strength, lifestyle, lung function, and functionality between asthmatics with exercise symptoms and healthy children. In addition, we have analyzed the association between clinical history and the presence of asthma. Study Design Cross-sectional study including 71 patients with a diagnosis of asthma and 71 healthy children and adolescents (7–17 years of age). Anthropometric data, clinical history, disease control, lifestyle (KIDMED and physical activity questionnaires), lung function (spirometry), exercise-induced bronchoconstriction test, aerobic fitness (cardiopulmonary exercise test), muscle strength and functionality (timed up and go; timed up and down stairs) were evaluated. Results Seventy-one patients with asthma (mean age 11.5 ± 2.7) and 71 healthy subjects (mean age 10.7 ± 2.5) were included. All asthmatic children had mild to moderate and stable asthma. EIB occurred in 56.3% of asthmatic children. Lung function was significantly (p < .05) lower in the asthmatic group when compared to healthy peers, as well as the cardiorespiratory fitness, muscle strength, lifestyle and functionality. Moreover, asthmatic children were more likely to have atopic dermatitis, allergic reactions, food allergies, and a family history of asthma when compared to healthy children. Conclusions Children with mild-to-moderate asthma presenting exercise symptoms show a reduction in cardiorespiratory fitness, muscle strength, lung function, functionality, and lifestyle when compared to healthy peers. The study provides data for pediatricians to support exercise practice aiming to improve prognosis and quality of life in asthmatic children.S

    Patterns in Nuclear and Mitochondrial DNA Reveal Historical and Recent Isolation in the Black-Tailed Godwit (Limosa limosa)

    Get PDF
    On the basis of morphological differences, three subspecies of Black-tailed Godwit (Limosa limosa) have been recognized (L. l. limosa, L. l. islandica and L. l. melanuroides). In previous studies mitochondrial DNA (mtDNA) sequence data showed minimal genetic divergence between the three subspecies and an absence of sub-structuring within L. l. limosa. Here, population genetic structure and phylogeographic patterns have been analyzed using COI, HVR1 and HVR2 mtDNA sequence data as well as 12 microsatellite loci (nuDNA). The nuDNA data suggest genetic differentiation between L. l. limosa from Sweden and The Netherlands, between L. l. limosa and L. l. islandica, but not between L. l. limosa and L. l. melanuroides. However, the mtDNA data were not consistent with the nuDNA pattern. mtDNA did support a split between L. l. melanuroides and L. l. limosa/L. l. islandica and also demonstrated two L. l. limosa haplotype clusters that were not geographically isolated. This genetic structure can be explained by a scenario of isolation of L. l. melanuroides from L. l. limosa in Beringia during the Last Glacial Maximum. During the Pleistocene separation of L. l. islandica from L. l. limosa occurred, followed by colonization of Iceland by the L. l. islandica during the Holocene. Within L. l. limosa founder events, followed by population expansion, took place during the Holocene also. According to the patterns observed in both markers together and their geographic separation, we propose that the three traditional subspecies indeed represent three separate genetic units.
    corecore