2,748 research outputs found

    Discovery, photometry, and astrometry of 49 classical nova candidates in M81 galaxy

    Full text link
    This paper reports on a search for new classical nova candidates in the M81 galaxy based on archival, as well as recent, new images. We used images from 1999-2007 to search for optical transients in M81. The positions of the identified classical nova candidates were used to study their spatial distribution. Kolmogorov - Smirnov test (KS) and bottom-to-top (BTR) ratio diagnostic were used to analyze the nova candidate distribution and differentiate between the disk and the bulge populations. In total, 49 classical nova candidates were discovered. In this study, we present the precise positions and photometry of these objects, plus the photometry of an additional 9 classical nova candidates found by Neill and Shara (2004). With our large sample, we find a different spatial distribution of classical nova candidates when compared to the results of earlier studies. Also, an extraordinarily bright nova was found and studied in detail.Comment: Accepted for publication in Astronomy & Astrophysics, 23 pages, 8 figure

    The binary near-Earth asteroid (175706) 1996 FG3 - An observational constraint on its orbital evolution

    Full text link
    Using our photometric observations taken between 1996 and 2013 and other published data, we derived properties of the binary near-Earth asteroid (175706) 1996 FG3 including new measurements constraining evolution of the mutual orbit with potential consequences for the entire binary asteroid population. We also refined previously determined values of parameters of both components, making 1996 FG3 one of the most well understood binary asteroid systems. We determined the orbital vector with a substantially greater accuracy than before and we also placed constraints on a stability of the orbit. Specifically, the ecliptic longitude and latitude of the orbital pole are 266{\deg} and -83{\deg}, respectively, with the mean radius of the uncertainty area of 4{\deg}, and the orbital period is 16.1508 +/- 0.0002 h (all quoted uncertainties correspond to 3sigma). We looked for a quadratic drift of the mean anomaly of the satellite and obtained a value of 0.04 +/- 0.20 deg/yr^2, i.e., consistent with zero. The drift is substantially lower than predicted by the pure binary YORP (BYORP) theory of McMahon and Scheeres (McMahon, J., Scheeres, D. [2010]. Icarus 209, 494-509) and it is consistent with the theory of an equilibrium between BYORP and tidal torques for synchronous binary asteroids as proposed by Jacobson and Scheeres (Jacobson, S.A., Scheeres, D. [2011]. ApJ Letters, 736, L19). Based on the assumption of equilibrium, we derived a ratio of the quality factor and tidal Love number of Q/k = 2.4 x 10^5 uncertain by a factor of five. We also derived a product of the rigidity and quality factor of mu Q = 1.3 x 10^7 Pa using the theory that assumes an elastic response of the asteroid material to the tidal forces. This very low value indicates that the primary of 1996 FG3 is a 'rubble pile', and it also calls for a re-thinking of the tidal energy dissipation in close asteroid binary systems.Comment: Many changes based on referees comment

    The tumbling rotational state of 1I/‘Oumuamua

    Get PDF
    The discovery of 1I/2017 U1 (1I/‘Oumuamua) has provided the first glimpse of a planetesimal born in another planetary system. This interloper exhibits a variable colour within a range that is broadly consistent with local small bodies, such as the P- and D-type asteroids, Jupiter Trojans and dynamically excited Kuiper belt objects. 1I/‘Oumuamua appears unusually elongated in shape, with an axial ratio exceeding 5:1. Rotation period estimates are inconsistent and varied, with reported values between 6.9 and 8.3 h. Here, we analyse all the available optical photometry data reported to date. No single rotation period can explain the exhibited brightness variations. Rather, 1I/‘Oumuamua appears to be in an excited rotational state undergoing non-principal axis rotation, or tumbling. A satisfactory solution has apparent lightcurve frequencies of 0.135 and 0.126 h−1 and implies a longest-to-shortest axis ratio of ≳5:1, although the available data are insufficient to uniquely constrain the true frequencies and shape. Assuming a body that responds to non-principal axis rotation in a similar manner to Solar System asteroids and comets, the timescale to damp 1I/‘Oumuamua’s tumbling is at least one billion years. 1I/‘Oumuamua was probably set tumbling within its parent planetary system and will remain tumbling well after it has left ours

    Search for direct stau production in events with two hadronic tau-leptons in root s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of the supersymmetric partners ofτ-leptons (staus) in final stateswith two hadronically decayingτ-leptons is presented. The analysis uses a dataset of pp collisions corresponding to an integrated luminosity of139fb−1, recorded with the ATLAS detector at the LargeHadron Collider at a center-of-mass energy of 13 TeV. No significant deviation from the expected StandardModel background is observed. Limits are derived in scenarios of direct production of stau pairs with eachstau decaying into the stable lightest neutralino and oneτ-lepton in simplified models where the two staumass eigenstates are degenerate. Stau masses from 120 GeV to 390 GeV are excluded at 95% confidencelevel for a massless lightest neutralino

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector