531 research outputs found

    High accuracy simulations of black hole binaries:spins anti-aligned with the orbital angular momentum

    Full text link
    High-accuracy binary black hole simulations are presented for black holes with spins anti-aligned with the orbital angular momentum. The particular case studied represents an equal-mass binary with spins of equal magnitude S/m^2=0.43757 \pm 0.00001. The system has initial orbital eccentricity ~4e-5, and is evolved through 10.6 orbits plus merger and ringdown. The remnant mass and spin are M_f=(0.961109 \pm 0.000003)M and S_f/M_f^2=0.54781 \pm 0.00001, respectively, where M is the mass during early inspiral. The gravitational waveforms have accumulated numerical phase errors of <~ 0.1 radians without any time or phase shifts, and <~ 0.01 radians when the waveforms are aligned with suitable time and phase shifts. The waveform is extrapolated to infinity using a procedure accurate to <~ 0.01 radians in phase, and the extrapolated waveform differs by up to 0.13 radians in phase and about one percent in amplitude from the waveform extracted at finite radius r=350M. The simulations employ different choices for the constraint damping parameters in the wave zone; this greatly reduces the effects of junk radiation, allowing the extraction of a clean gravitational wave signal even very early in the simulation.Comment: 14 pages, 15 figure

    Accurate gravitational waveforms for binary-black-hole mergers with nearly extremal spins

    Full text link
    Motivated by the possibility of observing gravitational waves from merging black holes whose spins are nearly extremal (i.e., 1 in dimensionless units), we present numerical waveforms from simulations of merging black holes with the highest spins simulated to date: (1) a 25.5-orbit inspiral, merger, and ringdown of two holes with equal masses and spins of magnitude 0.97 aligned with the orbital angular momentum; and (2) a previously reported 12.5-orbit inspiral, merger, and ringdown of two holes with equal masses and spins of magnitude 0.95 anti-aligned with the orbital angular momentum. First, we consider the horizon mass and spin evolution of the new aligned-spin simulation. During the inspiral, the horizon area and spin evolve in remarkably close agreement with Alvi's analytic predictions, and the remnant hole's final spin agrees reasonably well with several analytic predictions. We also find that the total energy emitted by a real astrophysical system with these parameters---almost all of which is radiated during the time included in this simulation---would be 10.952% of the initial mass at infinite separation. Second, we consider the gravitational waveforms for both simulations. After estimating their uncertainties, we compare the waveforms to several post-Newtonian approximants, finding significant disagreement well before merger, although the phase of the TaylorT4 approximant happens to agree remarkably well with the numerical prediction in the aligned-spin case. We find that the post-Newtonian waveforms have sufficient uncertainty that hybridized waveforms will require far longer numerical simulations (in the absence of improved post-Newtonian waveforms) for accurate parameter estimation of low-mass binary systems.Comment: 17 pages, 7 figures, submitted to Classical and Quantum Gravit

    Gauge drivers for the generalized harmonic Einstein equations

    Get PDF
    The generalized harmonic representation of Einstein's equations is manifestly hyperbolic for a large class of gauge conditions. Unfortunately most of the useful gauges developed over the past several decades by the numerical relativity community are incompatible with the hyperbolicity of the equations in this form. This paper presents a new method of imposing gauge conditions that preserves hyperbolicity for a much wider class of conditions, including as special cases many of the standard ones used in numerical relativity: e.g., K freezing, Gamma freezing, Bona-Massó slicing, conformal Gamma drivers, etc. Analytical and numerical results are presented which test the stability and the effectiveness of this new gauge-driver evolution system

    Constructing a boosted, spinning black hole in the damped harmonic gauge

    Get PDF
    The damped harmonic gauge is important for numerical relativity computations based on the generalized harmonic formulation of Einstein's equations, and is used to reduce coordinate distortions near binary black hole mergers. However, currently there is no prescription to construct quasiequilibrium binary black hole initial data in this gauge. Instead, initial data are typically constructed using a superposition of two boosted analytic single black hole solutions as free data in the solution of the constraint equations. Then, a smooth time-dependent gauge transformation is done early in the evolution to move into the damped harmonic gauge. Using this strategy to produce initial data in damped harmonic gauge would require the solution of a single black hole in this gauge, which is not known analytically. In this work we construct a single boosted, spinning, equilibrium BH in damped harmonic coordinates as a regular time-independent coordinate transformation from Kerr-Schild coordinates. To do this, we derive and solve a set of 4 coupled, nonlinear, elliptic equations for this transformation, with appropriate boundary conditions. This solution can now be used in the construction of damped harmonic initial data for binary black holes.Comment: Matches PRD version. 8 pages, 3 figure

    Testing the no-hair theorem with GW150914

    Get PDF
    We analyze gravitational-wave data from the first LIGO detection of a binary black-hole merger (GW150914) in search of the ringdown of the remnant black hole. Using observations beginning at the peak of the signal, we find evidence of the fundamental quasinormal mode and at least one overtone, both associated with the dominant angular mode (=m=2\ell=m=2), with 3.6σ3.6\sigma confidence. A ringdown model including overtones allows us to measure the final mass and spin magnitude of the remnant exclusively from postinspiral data, obtaining an estimate in agreement with the values inferred from the full signal. The mass and spin values we measure from the ringdown agree with those obtained using solely the fundamental mode at a later time, but have smaller uncertainties. Agreement between the postinspiral measurements of mass and spin and those using the full waveform supports the hypothesis that the GW150914 merger produced a Kerr black hole, as predicted by general relativity, and provides a test of the no-hair theorem at the 10%{\sim}10\% level. An independent measurement of the frequency of the first overtone yields agreement with the no-hair hypothesis at the 20%{\sim 20}\% level. As the detector sensitivity improves and the detected population of black hole mergers grows, we can expect that using overtones will provide even stronger tests.Comment: v2: journal versio

    Simulating merging binary black holes with nearly extremal spins

    Get PDF
    Astrophysically realistic black holes may have spins that are nearly extremal (i.e., close to 1 in dimensionless units). Numerical simulations of binary black holes are important tools both for calibrating analytical templates for gravitational-wave detection and for exploring the nonlinear dynamics of curved spacetime. However, all previous simulations of binary-black-hole inspiral, merger, and ringdown have been limited by an apparently insurmountable barrier: the merging holes' spins could not exceed 0.93, which is still a long way from the maximum possible value in terms of the physical effects of the spin. In this paper, we surpass this limit for the first time, opening the way to explore numerically the behavior of merging, nearly extremal black holes. Specifically, using an improved initial-data method suitable for binary black holes with nearly extremal spins, we simulate the inspiral (through 12.5 orbits), merger and ringdown of two equal-mass black holes with equal spins of magnitude 0.95 antialigned with the orbital angular momentum.Comment: 4 pages, 2 figures, updated with version accepted for publication in Phys. Rev. D, removed a plot that was incorrectly included at the end of the article in version v

    Numerical relativity simulation of GW150914 beyond general relativity

    Get PDF
    We produce the first astrophysically-relevant numerical binary black hole gravitational waveform in a higher-curvature theory of gravity beyond general relativity. We simulate a system with parameters consistent with GW150914, the first LIGO detection, in order-reduced dynamical Chern-Simons gravity, a theory with motivations in string theory and loop quantum gravity. We present results for the leading-order corrections to the merger and ringdown waveforms, as well as the ringdown quasi-normal mode spectrum. We estimate that such corrections may be discriminated in detections with signal to noise ratio 180240\gtrsim 180-240, with the precise value depending on the dimension of the GR waveform family used in data analysis.Comment: 7 pages + appendices, 8 figures, Updated to match Phys. D. Rev articl
    corecore