28 research outputs found

    High PD-1/PD-L1 Checkpoint Interaction Infers Tumor Selection and Therapeutic Sensitivity to Anti-PD-1/PD-L1 Treatment

    Get PDF
    Many cancers are termed immunoevasive due to expression of immunomodulatory ligands. Programmed death ligand-1 (PD-L1) and cluster of differentiation 80/86 (CD80/86) interact with their receptors, programmed death receptor-1 (PD-1) and cytotoxic T-lymphocyte antigen-4 (CTLA-4), respectively, on tumor-infiltrating leukocytes eliciting immunosuppression. Immunotherapies aimed at blocking these interactions are revolutionizing cancer treatments, albeit in an inadequately described patient subset. To address the issue of patient stratification for immune checkpoint intervention, we quantitatively imaged PD-1/PD-L1 interactions in tumor samples from patients, employing an assay that readily detects these intercellular protein-protein interactions in the less than or equal to 10 nm range. These analyses across multiple patient cohorts demonstrated the intercancer, interpatient, and intratumoral heterogeneity of interacting immune checkpoints. The PD-1/PD-L1 interaction was not correlated with clinical PD-L1 expression scores in malignant melanoma. Crucially, among anti-PD-1-treated patients with metastatic non-small cell lung cancer, those with lower PD-1/PD-L1 interaction had significantly worsened survival. It is surmised that within tumors selecting for an elevated level of PD-1/PD-L1 interaction, there is a greater dependence on this pathway for immune evasion and hence, they exhibit more impressive patient response to intervention. SIGNIFICANCE: Quantitation of immune checkpoint interaction by direct imaging demonstrates that immunotherapy-treated patients with metastatic NSCLC with a low extent of PD-1/PD-L1 interaction show significantly worse outcome.This work was supported, in part, by Department of Education, Basque Government- IT1270-19, Elkartek grant (BG18), and the Spanish Ministry grant (MINECO) PROJECTS of EXCELLENCE (BFU2015-65625-P). P.J. Parker was supported by a core grant to the Francis Crick Institute, from Cancer Research UK (FC001130), the UK Medical Research Council (FC001130), and the Wellcome Trust (FC001130).Peer reviewe

    A c-di-GMP Effector System Controls Cell Adhesion by Inside-Out Signaling and Surface Protein Cleavage

    Get PDF
    In Pseudomonas fluorescens Pf0-1 the availability of inorganic phosphate (Pi) is an environmental signal that controls biofilm formation through a cyclic dimeric GMP (c-di-GMP) signaling pathway. In low Pi conditions, a c-di-GMP phosphodiesterase (PDE) RapA is expressed, depleting cellular c-di-GMP and causing the loss of a critical outer-membrane adhesin LapA from the cell surface. This response involves an inner membrane protein LapD, which binds c-di-GMP in the cytoplasm and exerts a periplasmic output promoting LapA maintenance on the cell surface. Here we report how LapD differentially controls maintenance and release of LapA: c-di-GMP binding to LapD promotes interaction with and inhibition of the periplasmic protease LapG, which targets the N-terminus of LapA. We identify conserved amino acids in LapA required for cleavage by LapG. Mutating these residues in chromosomal lapA inhibits LapG activity in vivo, leading to retention of the adhesin on the cell surface. Mutations with defined effects on LapD's ability to control LapA localization in vivo show concomitant effects on c-di-GMP-dependent LapG inhibition in vitro. To establish the physiological importance of the LapD-LapG effector system, we track cell attachment and LapA protein localization during Pi starvation. Under this condition, the LapA adhesin is released from the surface of cells and biofilms detach from the substratum. This response requires c-di-GMP depletion by RapA, signaling through LapD, and proteolytic cleavage of LapA by LapG. These data, in combination with the companion study by Navarro et al. presenting a structural analysis of LapD's signaling mechanism, give a detailed description of a complete c-di-GMP control circuit—from environmental signal to molecular output. They describe a novel paradigm in bacterial signal transduction: regulation of a periplasmic enzyme by an inner membrane signaling protein that binds a cytoplasmic second messenger

    Membrane lipid interactions in intestinal ischemia/reperfusion-induced Injury

    Get PDF
    Ischemia, lack of blood flow, and reperfusion, return of blood flow, is a common phenomenon affecting millions of Americans each year. Roughly 30,000 Americans per year experience intestinal ischemia-reperfusion (IR), which is associated with a high mortality rate. Previous studies of the intestine established a role for neutrophils, eicosanoids, the complement system and naturally occurring antibodies in IR-induced pathology. Furthermore, data indicate involvement of a lipid or lipid-like moiety in mediating IR-induced damage. It has been proposed that exposure of neo-antigens are recognized by antibodies, triggering action of the complement cascade. While it is evident that the pathophysiology of IR-induced injury is complex and multi-factorial, we focus this review on the involvement of eicosanoids, phospholipids and neo-antigens in the early pathogenesis. Lipid changes occurring in response to IR, neo-antigens exposed and the role of a phospholipid transporter, phospholipid scramblase 1 will be discussed

    Quantification of biomarker functionality predicts patient outcomes

    Get PDF
    Implementation of a quantitative molecular imaging method (iFRET), which determines receptor–ligand interactions, has led to the finding that patients with a low extent of PD-1/PD-L1 interaction in metastatic NSCLC, and malignant melanoma, display significantly worsened overall survival compared to those with a high level of interaction.The original research was supported, in part, by Department of Education, Basque Government-IT1270-19, Elkartek grant (BG18) and the Spanish Ministry grant (MINECO) PROJECTS of EXCELLENCE (BFU2015-65625-P). P.J.P. was supported by a core grant to the Francis Crick Institute, from Cancer Research UK (FC001130), the UK Medical Research Council (FC001130) and the Wellcome Trust (FC001130)
    corecore