54 research outputs found

    Brightness perception for musical instrument sounds: Relation to timbre dissimilarity and source-cause categories.

    Get PDF
    Timbre dissimilarity of orchestral sounds is well-known to be multidimensional, with attack time and spectral centroid representing its two most robust acoustical correlates. The centroid dimension is traditionally considered as reflecting timbral brightness. However, the question of whether multiple continuous acoustical and/or categorical cues influence brightness perception has not been addressed comprehensively. A triangulation approach was used to examine the dimensionality of timbral brightness, its robustness across different psychoacoustical contexts, and relation to perception of the sounds' source-cause. Listeners compared 14 acoustic instrument sounds in three distinct tasks that collected general dissimilarity, brightness dissimilarity, and direct multi-stimulus brightness ratings. Results confirmed that brightness is a robust unitary auditory dimension, with direct ratings recovering the centroid dimension of general dissimilarity. When a two-dimensional space of brightness dissimilarity was considered, its second dimension correlated with the attack-time dimension of general dissimilarity, which was interpreted as reflecting a potential infiltration of the latter into brightness dissimilarity. Dissimilarity data were further modeled using partial least-squares regression with audio descriptors as predictors. Adding predictors derived from instrument family and the type of resonator and excitation did not improve the model fit, indicating that brightness perception is underpinned primarily by acoustical rather than source-cause cues

    Multimodal Classification of Stressful Environments in Visually Impaired Mobility Using EEG and Peripheral Biosignals

    Get PDF
    In this study, we aim to better understand the cognitive-emotional experience of visually impaired people when navigating in unfamiliar urban environments, both outdoor and indoor. We propose a multimodal framework based on random forest classifiers, which predict the actual environment among predefined generic classes of urban settings, inferring on real-time, non-invasive, ambulatory monitoring of brain and peripheral biosignals. Model performance reached 93% for the outdoor and 87% for the indoor environments (expressed in weighted AUROC), demonstrating the potential of the approach. Estimating the density distributions of the most predictive biomarkers, we present a series of geographic and temporal visualizations depicting the environmental contexts in which the most intense affective and cognitive reactions take place. A linear mixed model analysis revealed significant differences between categories of vision impairment, but not between normal and impaired vision. Despite the limited size of our cohort, these findings pave the way to emotionally intelligent mobility-enhancing systems, capable of implicit adaptation not only to changing environments but also to shifts in the affective state of the user in relation to different environmental and situational factors

    A review of differentiable digital signal processing for music and speech synthesis

    Get PDF
    The term “differentiable digital signal processing” describes a family of techniques in which loss function gradients are backpropagated through digital signal processors, facilitating their integration into neural networks. This article surveys the literature on differentiable audio signal processing, focusing on its use in music and speech synthesis. We catalogue applications to tasks including music performance rendering, sound matching, and voice transformation, discussing the motivations for and implications of the use of this methodology. This is accompanied by an overview of digital signal processing operations that have been implemented differentiably, which is further supported by a web book containing practical advice on differentiable synthesiser programming (https://intro2ddsp.github.io/). Finally, we highlight open challenges, including optimisation pathologies, robustness to real-world conditions, and design trade-offs, and discuss directions for future research

    Musical Haptics: Introduction

    Get PDF
    This chapter introduces to the concept of musical haptics, its scope, aims, challenges, as well as its relevance and impact for general haptics and human–computer interaction. A brief summary of subsequent chapters is given

    Spectral and Temporal Timbral Cues of Vocal Imitations of Drum Sounds

    Get PDF
    The imitation of non-vocal sounds using the human voice is a resource we sometimes rely on when communicating sound concepts to other people. Query by Vocal Percussion (QVP) is a subfield in Music Information..

    Cognitive Load Assessment from EEG and Peripheral Biosignals for the Design of Visually Impaired Mobility Aids

    Get PDF
    Reliable detection of cognitive load would benefit the design of intelligent assistive navigation aids for the visually impaired (VIP). Ten participants with various degrees of sight loss navigated in unfamiliar indoor and outdoor environments, while their electroencephalogram (EEG) and electrodermal activity (EDA) signals were being recorded. In this study, the cognitive load of the tasks was assessed in real time based on a modification of the well-established event-related (de)synchronization (ERD/ERS) index. We present an in-depth analysis of the environments that mostly challenge people from certain categories of sight loss and we present an automatic classification of the perceived difficulty in each time instance, inferred from their biosignals. Given the limited size of our sample, our findings suggest that there are significant differences across the environments for the various categories of sight loss. Moreover, we exploit cross-modal relations predicting the cognitive load in real time inferring on features extracted from the EDA. Such possibility paves the way for the design on less invasive, wearable assistive devices that take into consideration the well-being of the VIP

    Differentiable Modelling of Percussive Audio with Transient and Spectral Synthesis

    Get PDF
    Differentiable digital signal processing (DDSP) techniques, including methods for audio synthesis, have gained attention in recent years and lend themselves to interpretability in the parameter space. However, current differentiable synthesis methods have not explicitly sought to model the transient portion of signals, which is important for percussive sounds. In this work, we present a unified synthesis framework aiming to address transient generation and percussive synthesis within a DDSP framework. To this end, we propose a model for percussive synthesis that builds on sinusoidal modeling synthesis and incorporates a modulated temporal convolutional network for transient generation. We use a modified sinusoidal peak picking algorithm to generate time-varying non-harmonic sinusoids and pair it with differentiable noise and transient encoders that are jointly trained to reconstruct drumset sounds. We compute a set of reconstruction metrics using a large dataset of acoustic and electronic percussion samples that show that our method leads to improved onset signal reconstruction for membranophone percussion instruments
    • …