44 research outputs found

    Levels of per- and polyfluoroalkyl substances (PFAS) in Norwegian children stratified by age and sex - Data from the Bergen Growth Study 2

    Get PDF
    Background and aim Due to the persistence, bioaccumulation and potential adverse health effects, there have been restrictions and phase out in the production of certain per- and polyfluoroalkyl substances (PFAS) since the early 2000s. Published serum levels of PFAS during childhood are variable and may reflect the impact of age, sex, sampling year and exposure history. Surveying the concentrations of PFAS in children is vital to provide information regarding exposure during this critical time of development. The aim of the current study was therefore to evaluate serum concentrations of PFAS in Norwegian schoolchildren according to age and sex. Material and methods Serum samples from 1094 children (645 girls and 449 boys) aged 6–16 years, attending schools in Bergen, Norway, were analyzed for 19 PFAS. The samples were collected in 2016 as part of the Bergen Growth Study 2. Statistical analyses included Student t-test, one-way ANOVA and Spearman's correlation analysis of log-transformed data. Results Of the 19 PFAS examined, 11 were detected in the serum samples. Perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorohexanesulfonic acid (PFHxS) and perfluorononaoic acid (PFNA) were present in all samples with geometric means of 2.67, 1.35, 0.47 and 0.68 ng/mL, respectively. In total, 203 children (19%) had PFAS levels above the safety limits set by the German Human Biomonitoring Commission. Significantly higher serum concentrations were found in boys compared to girls for PFOS, PFNA, PFHxS and perfluoroheptanesulfonic acid (PFHpS). Furthermore, serum concentrations of PFOS, PFOA, PFHxS and PFHpS were significantly higher in children under the age of 12 years than in older children. Conclusions PFAS exposure was widespread in the sample population of Norwegian children analyzed in this study. Approximately one out of five children had PFAS levels above safety limits, indicating a potential risk of negative health effects. The majority of the analyzed PFAS showed higher levels in boys than in girls and decreased serum concentrations with age, which may be explained by changes related to growth and maturation.publishedVersio

    Prenatal exposure to per- and polyfluoroalkyl substances (PFAS) and associations with attention-deficit/hyperactivity disorder and autism spectrum disorder in children

    Get PDF
    Background Prenatal exposure to per- and polyfluoroalkyl substances (PFAS) may be a risk factor for neurodevelopmental deficits and disorders, but evidence is inconsistent. Objectives We investigated whether prenatal exposure to PFAS were associated with childhood diagnosis of attention-deficit/hyperactivity disorder (ADHD) or autism spectrum disorder (ASD). Methods This study was based on the Norwegian Mother, Father and Child Cohort Study and included n = 821 ADHD cases, n = 400 ASD cases and n = 980 controls. Diagnostic cases were identified by linkage with the Norwegian Patient Registry. In addition, we used data from the Medical Birth Registry of Norway. The study included the following PFAS measured in maternal plasma sampled mid-pregnancy: Perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA), perfluorohexane sulfonate (PFHxS), perfluoroheptanesulfonic acid (PFHpS), and perfluorooctane sulfonate (PFOS). Relationships between individual PFAS and ADHD or ASD diagnoses were examined using multivariable adjusted logistic regression models. We also tested for possible non-linear exposure-outcome associations. Further, we investigated the PFAS mixture associations with ASD and ADHD diagnoses using a quantile-based g-computation approach. Results Odds of ASD was significantly elevated in PFOA quartile 2 [OR = 1.71 (95% CI: 1.20, 2.45)] compared to quartile 1, and PFOA appeared to have a non-linear, inverted U-shaped dose-response relationship with ASD. PFOA was also associated with increased odds of ADHD, mainly in quartile 2 [OR = 1.54 (95% CI: 1.16, 2.04)] compared to quartile 1, and displayed a non-linear relationship in the restricted cubic spline model. Several PFAS (PFUnDA, PFDA, and PFOS) were inversely associated with odds of ADHD and/or ASD. Some of the associations were modified by child sex and maternal education. The overall PFAS mixture was inversely associated with ASD [OR = 0.76 (95% CI: 0.64, 0.90)] as well as the carboxylate mixture [OR = 0.79 (95% CI: 0.68, 0.93)] and the sulfonate mixture [OR = 0.84 (95% CI: 0.73, 0.96)]. Conclusion Prenatal exposure to PFOA was associated with increased risk of ASD and ADHD in children. For some PFAS, as well as their mixtures, there were inverse associations with ASD and/or ADHD. However, the inverse associations reported herein should not be interpreted as protective effects, but rather that there could be some unresolved confounding for these relationships. The epidemiologic literature linking PFAS exposures with neurodevelopmental outcomes is still inconclusive, suggesting the need for more research to elucidate the neurotoxicological potential of PFAS during early development

    Prenatal exposure to perfluoroalkyl substances and associations with symptoms of attention-deficit/hyperactivity disorder and cognitive functions in preschool children

    Get PDF
    BACKGROUND: Perfluoroalkyl substances (PFASs) are persistent organic pollutants that are suspected to be neurodevelopmental toxicants, but epidemiological evidence on neurodevelopmental effects of PFAS exposure is inconsistent. We investigated the associations between prenatal exposure to PFASs and symptoms of attention-deficit/hyperactivity disorder (ADHD) and cognitive functioning (language skills, estimated IQ and working memory) in preschool children, as well as effect modification by child sex. MATERIAL AND METHODS: This study included 944 mother-child pairs enrolled in a longitudinal prospective study of ADHD symptoms (the ADHD Study), with participants recruited from The Norwegian Mother, Father and Child Cohort Study (MoBa). Boys and girls aged three and a half years, participated in extensive clinical assessments using well-validated tools; The Preschool Age Psychiatric Assessment interview, Child Development Inventory and Stanford-Binet (5th revision). Prenatal levels of 19 PFASs were measured in maternal blood at week 17 of gestation. Multivariable adjusted regression models were used to examine exposure-outcome associations with two principal components extracted from the seven detected PFASs. Based on these results, we performed regression analyses of individual PFASs categorized into quintiles. RESULTS: PFAS component 1 was mainly explained by perfluoroheptane sulfonate (PFHpS), perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS) and perfluorooctanoic acid (PFOA). PFAS component 2 was mainly explained by perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA) and perfluorononanoic acid (PFNA). Regression models showed a negative association between PFAS component 1 and nonverbal working memory [ÎČ = -0.08 (CI: -0.12, -0.03)] and a positive association between PFAS component 2 and verbal working memory [ÎČ = 0.07 (CI: 0.01, 0.12)]. There were no associations with ADHD symptoms, language skills or IQ. For verbal working memory and PFAS component 2, we found evidence for effect modification by child sex, with associations only for boys. The results of quintile models with individual PFASs, showed the same pattern for working memory as the results in the component regression analyses. There were negative associations between nonverbal working memory and quintiles of PFOA, PFNA, PFHxS, PFHpS and PFOS and positive associations between verbal working memory and quintiles of PFOA, PFNA, PFDA and PFUnDA, with significant relationships mainly in the highest concentration groups. CONCLUSIONS: Based on our results, we did not find consistent evidence to conclude that prenatal exposure to PFASs are associated with ADHD symptoms or cognitive dysfunctions in preschool children aged three and a half years, which is in line with the majority of studies in this area. Our results showed some associations between PFASs and working memory, particularly negative relationships with nonverbal working memory, but also positive relationships with verbal working memory. The relationships were weak, as well as both positive and negative, which suggest no clear association - and need for replication.This research was funded by the Research Council of Norway (MILJØFORSK, project no. 267984/E50 “NeuroTox”), National Institutes of Health (NIH) R01ES021777, and National Institute of Environmental Health Sciences (NIEHS) P30 ES010126. The ADHD Study, from which the present data were drawn, was supported by funds and grants from the Norwegian Ministry of Health, the Norwegian Health Directorate, the South-Eastern Health Region, G&PJ Sorensen Fund for Scientific Research, and from the Norwegian Resource Centre for ADHD, Tourette syndrome and Narcolepsy. The Norwegian Mother, Father and Child Cohort Study is supported by the Norwegian Ministry of Health and Care Services and the Ministry of Education and Research, NIH, and National Institute of Neurological Disorders and Stroke (NINDS) (grant no.1 UO1 NS 047537-01 and grant no.2 UO1 NS 047537-06A1). We are grateful to all the participating families in Norway who take part in this on-going cohort study, and to the staff of the ADHD Study.publishedVersio

    Perfluoroalkyl substances and lipid concentrations in plasma during pregnancy among women in the Norwegian Mother and Child Cohort Study

    Get PDF
    Perfluoroalkyl substances (PFASs) are widespread and persistent environmental pollutants. Previous studies, primarily among non-pregnant individuals, suggest positive associations between PFAS levels and certain blood lipids. If there is a causal link between PFAS concentrations and elevated lipids during pregnancy, this may suggest a mechanism by which PFAS exposure leads to certain adverse pregnancy outcomes, including preeclampsia

    Perfluoroalkyl Substances During Pregnancy and Validated Preeclampsia Among Nulliparous Women in the Norwegian Mother and Child Cohort Study

    Get PDF
    Perfluoroalkyl substances (PFAS) are persistent and ubiquitous environmental contaminants, and human exposure to these substances may be related to preeclampsia, a common pregnancy complication. Previous studies have found serum concentrations of PFAS to be positively associated with pregnancy-induced hypertension and preeclampsia in a population with high levels of exposure to perfluorooctanoate. Whether this association exists among pregnant women with background levels of PFAS exposure is unknown. Using data from the Norwegian Mother and Child Cohort Study conducted by the Norwegian Institute of Public Health, we carried out a study of nulliparous pregnant women enrolled in 2003–2007 (466 cases, 510 noncases) to estimate associations between PFAS concentrations and an independently validated diagnosis of preeclampsia. We measured levels of 9 PFAS in maternal plasma extracted midpregnancy; statistical analyses were restricted to 7 PFAS that were quantifiable in more than 50% of samples. In proportional hazards models adjusted for maternal age, prepregnancy body mass index (weight (kg)/height (m)2), educational level, and smoking status, we observed no strongly positive associations between PFAS levels and preeclampsia. We found an inverse association between preeclampsia and the highest quartile of perfluoroundecanoic acid concentration relative to the lowest quartile (hazard ratio = 0.55, 95% confidence interval: 0.38, 0.81). Overall, our findings do not support an increased risk of preeclampsia among nulliparous Norwegian women with background levels of PFAS exposure

    Determination of phthalate metabolites in human urine using column switching LC-MS/MS

    No full text
    The need for sensitive and rapid methods for determination of human exposure to phthalates has increased in the recent years. This is due to ubiquitous use of phthalates and the potential health risks associated with exposure to them. This thesis presents an accurate, sensitive and automated analytical method for measuring 13 phthalate metabolites (free and conjugated) in human urine using on-line solid phase extraction coupled to high performance liquid chromatography – electrospray ionization – tandem mass spectrometry. A small volume of urine sample (300 ÎŒL) is required. Glucoronidated phthalate metabolites are deconjugated by incubation with glucoronidase enzyme (Escherihia coli-K 12) and the reaction is stopped by adding formic acid. This is the only sample preparation needed prior to injection into the column switching system. Thus the method involves minimal sample handling and minimizes possible contaminations from the surroundings. The method has been validated by spiking synthetic urine at 11 concentration levels in the range of 0.1-500 ng phthalate metabolites/mL synthetic urine. For 12 out of 13 phthalate metabolites isotopically labelled internal standards were used. The method is sensitive with limits of detection in the low nanogram range (0.01-0.10 ng phthalate metabolite/mL urine), and rapid with total run time of 27 minutes. The accuracy of the method given as recovery relative to the internal standard was 90-120% (in the range of 1-500 ng phthalate metabolite/ mL urine). The repeatability, given as relative standard deviation, was below 20% for most compounds. The accuracy was also evaluated by analyzing two urine samples from the “External Quality Assessment Scheme” and was found satisfactory. The method has been applied on 17 samples of human urine from three Norwegian women. All 13 phthalate metabolites were found to be above the limit of detection and in the same concentration ranges as found in other studies. Most phthalate metabolites were found to be strongly intercorrelated. The high sensitivity, high throughput and minimal manual handling make the method suitable for large-scale human biomonitoring studies

    Changes in perfluoroalkyl substances (PFAS) concentrations in human milk over the course of lactation : A study in Ronneby mother-child cohort

    No full text
    Background: Little is known about how PFAS concentrations in human milk change over the course of lactation, although this is an important determinant of cumulative infant exposure from breastfeeding.Objective: To estimate changes in PFAS concentrations in human milk over the course of lactation in a population with a wide range of exposure from background-to high-exposed.Methods: We measured PFAS concentrations in colostrum and mature milk samples from women in the Ronneby Mother-Child Cohort. For each PFAS, we estimated the change in concentration from colostrum collected 3-4 days postpartum to mature milk collected 4-12 weeks postpartum using linear mixed-effects models. We evaluated whether this estimated change varied by quartiles of colostrum concentrations. In a subset of mothers with at least three mature milk samples, we estimated the change in concentration per month over the first eight months of lactation.Results: Our study included 77 mother-child pairs, of whom 74 had colostrum and initial mature milk samples and 11 had three or more repeated samples. The concentration change from colostrum to mature milk varied by PFAS. While PFOS increased by 21% (95% CI: 8.9, 35), PFOA decreased by 17% (95% CI: -28, -3.5) and PFHxS decreased by 12% (95% CI: -24, 3.3). In addition, PFAS concentrations tended to increase in women with lower colostrum levels, but decreased or remained the same in women with high colostrum concentrations. When we estimated changes over the course of lactation, we found that PFOA concentrations decreased the most (-12% per month; 95% CI: -22, -1.5), whereas PFHxS and PFOS showed small nonsignificant decreases.Conclusions: Models for cumulative infancy exposure from breastfeeding need to account for differences in concentration trajectories by PFAS and possibly by maternal exposure level. Additional research is needed to evaluate the relative exposure from breastfeeding vs prenatal exposure, especially in highly exposed communities where breastfeeding guidance is urgently needed

    Pregnancy Exposure to Phenols and Anthropometric Measures in Gestation and at Birth

    No full text
    International audienceBackground: Some synthetic phenols alter pathways involved in fetal development. Despite their high within-subject temporal variability, earlier studies relied on spot urine samples to assess pregnancy exposure. In this study, we examined associations between prenatal phenol exposure and fetal growth. Methods: We measured concentrations of two bisphenols, four parabens, benzophenone-3, and triclosan in 478 pregnant women in two weekly pools of 21 samples each, collected at 18 and 34 gestational weeks. We used adjusted linear regressions to study associations between phenol concentrations and growth outcomes assessed twice during pregnancy and at birth. Results: Benzophenone-3 was positively associated with all ultrasound growth parameters in at least one time point, in males but not females. In females, butylparaben was negatively associated with third-trimester abdominal circumference and weight at birth. We observed isolated associations for triclosan (negative) and for methylparaben and bisphenol S (positive) and late pregnancy fetal growth. Conclusions: Our results suggest associations between prenatal exposure to phenols and fetal growth. Benzophenone-3 was the exposure most consistently (positively) associated across all growth parameters
    corecore