532 research outputs found

    Duality of Quasilocal Gravitational Energy and Charges with Non-orthogonal Boundaries

    Get PDF
    We study the duality of quasilocal energy and charges with non-orthogonal boundaries in the (2+1)-dimensional low-energy string theory. Quasilocal quantities shown in the previous work and some new variables arisen from considering the non-orthogonal boundaries as well are presented, and the boost relations between those quantities are discussed. Moreover, we show that the dual properties of quasilocal variables such as quasilocal energy density, momentum densities, surface stress densities, dilaton pressure densities, and Neuve-Schwarz(NS) charge density, are still valid in the moving observer's frame.Comment: 19pages, 1figure, RevTe

    Phase Separation Based on U(1) Slave-boson Functional Integral Approach to the t-J Model

    Full text link
    We investigate the phase diagram of phase separation for the hole-doped two dimensional system of antiferromagnetically correlated electrons based on the U(1) slave-boson functional integral approach to the t-J model. We show that the phase separation occurs for all values of J/t, that is, whether 0<J/t<10 < J/t < 1 or J/t1J/t \geq 1 with J, the Heisenberg coupling constant and t, the hopping strength. This is consistent with other numerical studies of hole-doped two dimensional antiferromagnets. The phase separation in the physically interesting J region, 0<J/t0.40 < J/t \lesssim 0.4 is examined by introducing hole-hole (holon-holon) repulsive interaction. We find from this study that with high repulsive interaction between holes the phase separation boundary tends to remain robust in this low JJ region, while in the high J region, J/t > 0.4, the phase separation boundary tends to disappear.Comment: 4 pages, 2 figures, submitted to Phys. Rev.

    Nonparametric nonlinear model predictive control

    Get PDF
    Model Predictive Control (MPC) has recently found wide acceptance in industrial applications, but its potential has been much impeded by linear models due to the lack of a similarly accepted nonlinear modeling or databased technique. Aimed at solving this problem, the paper addresses three issues: (i) extending second-order Volterra nonlinear MPC (NMPC) to higher-order for improved prediction and control; (ii) formulating NMPC directly with plant data without needing for parametric modeling, which has hindered the progress of NMPC; and (iii) incorporating an error estimator directly in the formulation and hence eliminating the need for a nonlinear state observer. Following analysis of NMPC objectives and existing solutions, nonparametric NMPC is derived in discrete-time using multidimensional convolution between plant data and Volterra kernel measurements. This approach is validated against the benchmark van de Vusse nonlinear process control problem and is applied to an industrial polymerization process by using Volterra kernels of up to the third order. Results show that the nonparametric approach is very efficient and effective and considerably outperforms existing methods, while retaining the original data-based spirit and characteristics of linear MPC

    Production and Decay of D_1(2420)^0 and D_2^*(2460)^0

    Get PDF
    We have investigated D+πD^{+}\pi^{-} and D+πD^{*+}\pi^{-} final states and observed the two established L=1L=1 charmed mesons, the D1(2420)0D_1(2420)^0 with mass 242122+1+22421^{+1+2}_{-2-2} MeV/c2^{2} and width 2053+6+320^{+6+3}_{-5-3} MeV/c2^{2} and the D2(2460)0D_2^*(2460)^0 with mass 2465±3±32465 \pm 3 \pm 3 MeV/c2^{2} and width 2876+8+628^{+8+6}_{-7-6} MeV/c2^{2}. Properties of these final states, including their decay angular distributions and spin-parity assignments, have been studied. We identify these two mesons as the jlight=3/2j_{light}=3/2 doublet predicted by HQET. We also obtain constraints on {\footnotesize ΓS/(ΓS+ΓD)\Gamma_S/(\Gamma_S + \Gamma_D)} as a function of the cosine of the relative phase of the two amplitudes in the D1(2420)0D_1(2420)^0 decay.Comment: 15 pages in REVTEX format. hardcopies with figures can be obtained by sending mail to: [email protected]

    Measurement of the branching fraction for Υ(1S)τ+τ\Upsilon (1S) \to \tau^+ \tau^-

    Full text link
    We have studied the leptonic decay of the Υ(1S)\Upsilon (1S) resonance into tau pairs using the CLEO II detector. A clean sample of tau pair events is identified via events containing two charged particles where exactly one of the particles is an identified electron. We find B(Υ(1S)τ+τ)=(2.61 ± 0.12 +0.090.13)B(\Upsilon(1S) \to \tau^+ \tau^-) = (2.61~\pm~0.12~{+0.09\atop{-0.13}})%. The result is consistent with expectations from lepton universality.Comment: 9 pages, RevTeX, two Postscript figures available upon request, CLNS 94/1297, CLEO 94-20 (submitted to Physics Letters B

    Study of the B^0 Semileptonic Decay Spectrum at the Upsilon(4S) Resonance

    Full text link
    We have made a first measurement of the lepton momentum spectrum in a sample of events enriched in neutral B's through a partial reconstruction of B0 --> D*- l+ nu. This spectrum, measured with 2.38 fb**-1 of data collected at the Upsilon(4S) resonance by the CLEO II detector, is compared directly to the inclusive lepton spectrum from all Upsilon(4S) events in the same data set. These two spectra are consistent with having the same shape above 1.5 GeV/c. From the two spectra and two other CLEO measurements, we obtain the B0 and B+ semileptonic branching fractions, b0 and b+, their ratio, and the production ratio f+-/f00 of B+ and B0 pairs at the Upsilon(4S). We report b+/b0=0.950 (+0.117-0.080) +- 0.091, b0 = (10.78 +- 0.60 +- 0.69)%, and b+ = (10.25 +- 0.57 +- 0.65)%. b+/b0 is equivalent to the ratio of charged to neutral B lifetimes, tau+/tau0.Comment: 14 page, postscript file also available at http://w4.lns.cornell.edu/public/CLN

    Observation of the Ξc+\Xi_c^+ Charmed Baryon Decays to Σ+Kπ+\Sigma^+ K^-\pi^+, Σ+Kˉ0\Sigma^+ \bar{K}^{*0}, and ΛKπ+π+\Lambda K^-\pi^+\pi^+

    Full text link
    We have observed two new decay modes of the charmed baryon Ξc+\Xi_c^+ into Σ+Kπ+\Sigma^+ K^-\pi^+ and Σ+Kˉ0\Sigma^+ \bar{K}^{*0} using data collected with the CLEO II detector. We also present the first measurement of the branching fraction for the previously observed decay mode Ξc+ΛKπ+π+\Xi_c^+\to\Lambda K^-\pi^+\pi^+. The branching fractions for these three modes relative to Ξc+Ξπ+π+\Xi_c^+\to\Xi^-\pi^+\pi^+ are measured to be 1.18±0.26±0.171.18 \pm 0.26 \pm 0.17, 0.92±0.27±0.140.92 \pm 0.27 \pm 0.14, and 0.58±0.16±0.070.58 \pm 0.16 \pm 0.07, respectively.Comment: 12 page uuencoded postscript file, postscript file also available through http://w4.lns.cornell.edu/public/CLN

    Measurement of the Decay Asymmetry Parameters in Λc+Λπ+\Lambda_c^+ \to \Lambda\pi^+ and Λc+Σ+π0\Lambda_c^+ \to \Sigma^+\pi^0

    Full text link
    We have measured the weak decay asymmetry parameters (\aLC ) for two \LC\ decay modes. Our measurements are \aLC = -0.94^{+0.21+0.12}_{-0.06-0.06} for the decay mode Λc+Λπ+\Lambda_c^+ \to \Lambda\pi^+ and \aLC = -0.45\pm 0.31 \pm 0.06 for the decay mode ΛcΣ+π0\Lambda_c \to \Sigma^+\pi^0 . By combining these measurements with the previously measured decay rates, we have extracted the parity-violating and parity-conserving amplitudes. These amplitudes are used to test models of nonleptonic charmed baryon decay.Comment: 11 pages including the figures. Uses REVTEX and psfig macros. Figures as uuencoded postscript. Also available as http://w4.lns.cornell.edu/public/CLNS/1995/CLNS95-1319.p

    Measurement of the Mass Splittings between the bbˉχb,J(1P)b\bar{b}\chi_{b,J}(1P) States

    Full text link
    We present new measurements of photon energies and branching fractions for the radiative transitions: Upsilon(2S)->gamma+chi_b(J=0,1,2). The masses of the chi_b states are determined from the measured radiative photon energies. The ratio of mass splittings between the chi_b substates, r==(M[J=2]-M[J=1])/(M[J=1]-M[J=0]) with M the chi_b mass, provides information on the nature of the bbbar confining potential. We find r(1P)=0.54+/-0.02+/-0.02. This value is in conflict with the previous world average, but more consistent with the theoretical expectation that r(1P)<r(2P); i.e., that this mass splittings ratio is smaller for the chi_b(1P) triplet than for the chi_b(2P) triplet.Comment: 11 page postscript file, postscript file also available through http://w4.lns.cornell.edu/public/CLN
    corecore