1,635 research outputs found

    A high-altitude snow chemistry record from Amundsenisen, Dronning Maud Land, Antarctica

    Get PDF
    In this paper a detailed record of major ions from a 20 m deep firn core from Amundsenisen, western Dronning Maud Land, Antarctica, is presented. The core was drilled at 75° S, 2° E (2900 m a.s.l.) during austral summer 1991/92. The following ions were measured at 3 cm resolution: Na+, Mg2+, Ca2+, Cl−, NO3−, S04 2− and CH3SO3H (MSA). The core was dated back to 1865 using a combination of chemical records and volcanic reference horizons. The volcanic eruptions identified in this core are Mount Ngauruhoe, New Zealand (1974–75), Mount Agung, Indonesia (1963), Azul, Argentina (1932), and a broad peak that corresponds in time toTarawera, New Zealand (1886), Falcon Island, South Shetlands, Southern Ocean (1885), and Krakatau, Indonesia (1883). There are no trends in any of the ion records, but the annual to decadal changes are large. The mean concentrations of the measured ions are in agreement with those from other high-altitude cores from the Antarctic plateau. At this core site there may be a correspondence between peaks in the MSA record and major El Niño–Southern Oscillation events

    Ridge, Moldboard, Chisel, and No-Till Effects on Tile Water Quality beneath Two Cropping Systems

    Get PDF
    Soil conservation tillage systems, including ridge-tillage, often reduce surface water contamination by pesticides because soil erosion and surface runoff are reduced. However, the effects on losses through subsurface drainage tile are somewhat uncertain. Our field study quantified the effects of four tillage practices in continuous corn (Zea mays L.) and corn-soybean [Glycine max (L.) Merr] rotations on herbicide and nitrate N losses in tile drainage water. Fertilizer and pesticide application methods were uniform for ridge, moldboard, chisel, and no-till systems. Pesticide and nitrate N leaching losses were significantly affected by crop rotation. Tillage practice had little influence on nitrate N and pesticide losses to the subsurface drainage water within a corn-soybean rotation. However, ridge-till and no-till resulted in larger losses of atrazine than the moldboard plow and chisel based systems under continuous corn. Tillage system did not affect the timings of peak tile flow occurrences, although peak tile flow volume was affected by tillage, presumably because each system bad its own macropore system related to preservation or annual destruction of biopores by tillage. Corn yields were significantly higher under corn-soybean rotation than with continuous-corn for all tillage practices. These results indicate that continuous corn production is not an environmentally sustainable practice for this area because it resulted in higher nitrate N leaching losses to groundwater, received higher N-applications, and resulted in lower corn yields than the corn-soybean rotation. The results also reinforce the need for studies on chemical placement, rate, and timing for various tillage practices to reduce tile drainage losses of agricultural chemicals

    Spatial variability of snow chemistry in western Dronning Maud Land, Antarctica

    Get PDF
    During the austral summer of 1993-94 a number of 1-2 m deep snow pits were sampled in connection with firn-coring in western Dronning Maud Land, Antarctica. The traverse went from 800 to about 3000 m a.s.l. upon the high-altitude plateau. Profiles of cations (Na+, K+, Mg2+, Ca2+), anions (Cl−, NO3-, SO4 2- , CH3SO3 −) and stable oxygen isotopes (δ18O) from 11 snow pils are presented here. Close to the coast 2 m of snow accumulates in about 2-3 years, whilst at sites on the high-altitude plateau 2 m of snow accumulates in 10—14 years. The spatial variation in ion concentrations shows that the ions can be divided into two groups, one with sea-salt elements and methane sulfonate and the other with nitrate and sulfate. For the sca-salt elements and methane sulfonate the concentrations decrease with increasing altitude and increasing distance from the coast, as well as with decreasing temperature and decreasing accumulation rate. For nitrate and sulfate the concentrations are constant or increase with respect to these parameters. This pattern suggests that the sources for sca-salt elements and methane sulfonate are local, whereas the sources for nitrate and sulfate are a mixture of local and long-range transport

    RZWQM simulation of long-term crop production, water and nitrogen balances in Northeast Iowa

    Get PDF
    Agricultural system models are tools to represent and understand major processes and their interactions in agricultural systems. We used the Root Zone Water Quality Model (RZWQM) with 26 years of data from a study near Nashua, IA to evaluate year to year crop yield, water, and N balances. The model was calibrated using data from one 0.4 ha plot and evaluated by comparing simulated values with data from 29 of the 36 plots at the same research site (six were excluded). The dataset contains measured tile flow that varied considerably from plot to plot so we calibrated total tile flow amount by adjusting a lateral hydraulic gradient term for subsurface lateral flow below tiles for each plot. Keeping all other soil and plant parameters constant, RZWQM correctly simulated year to year variations in tile flow (r2 = 0.74) and N loading in tile flow (r2 = 0.71). Yearly crop yield variation was simulated with less satisfaction (r2 = 0.52 for corn and r2 = 0.37 for soybean) although the average yields were reasonably simulated. Root mean square errors (RMSE) for simulated soil water storage, water table, and annual tile flow were 3.0, 22.1, and 5.6 cm, respectively. These values were close to the average RMSE for the measured data between replicates (3.0, 22.4, and 5.7 cm, respectively). RMSE values for simulated annual N loading and residual soil N were 16.8 and 47.0 kg N ha−1, respectively, which were much higher than the average RMSE for measurements among replicates (7.8 and 38.8 kg N ha−1, respectively). The high RMSE for N simulation might be caused by high simulation errors in plant N uptake. Simulated corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] yields had high RMSE (1386 and 674 kg ha−1) with coefficient of variations (CV) of 0.19 and 0.25, respectively. Further improvements were needed for better simulating plant N uptake and yield, but overall, results for annual tile flow and annual N loading in tile flow were acceptable

    Simulating management effects on crop production, tile drainage, and water quality using RZWQM–DSSAT

    Get PDF
    The objective of this study was to explore if more crop-specific plant growth modules can improve simulations of crop yields, and N in tile flow under different management practices compared with a generic plant growth module. We calibrated and evaluated the Root Zone Water Quality Model (RZWQM) with the Decision Support for Agrotechnology Transfer (DSSAT v3.5) plant growth modules (RZWQM–DSSAT) for simulating tillage (NT — no till, RT — ridge till, CP — chisel plow, and MP — moldboard plow), crop rotation {CC — continuous corn, and CS — corn (Zea mays L.)–soybean [Glycine max (L.) Merr.]}, and nitrogen (N) (SA — single application at preplant, and LSNT — late spring soil N test based application) and manure (SM — fall injected swine manure) management effects on crop production and water quality. Data from 1978 to 2003 from a water quality experiment near Nashua (Nashua experiments), Iowa, USA, were used. The model was calibrated using data from one treatment plot and validated for the rest of the plots. Simulated management effects on annual N loading in tile flow were agreeable with measured effects in 85%, 99%, 88%, and 78% of the cases for tillage, crop rotation (CS vs. CC), N application timing (SA vs. LSNT), and swine manure applications (SM vs. SA), respectively. On average, the LSNT plots were simulated to have 359 kg ha− 1 higher corn yield compared to SA, when the observed increase was 812 kg ha− 1. Grain yield simulations were not sensitive to differences between RT and NT, between SM and SA treatments, and between CS and CC. We conclude that considering the uncertainties of basic input data, processes in the field, and lack of site specific weather data, the results obtained with this RZWQM–DSSAT hybrid model were not much better than the results obtained earlier with the generic crop growth module

    Crop Rotation Effects on N03-N Leaching and Corn Yields Under Manure Management Practices

    Get PDF
    Nonpoint source nutrient pollution is recognized as an important environmental and social issue for several reasons. First, manure from swine production facilities can have serious impacts on the quality of surface and ground water resources. Second, several states are in the process of creating laws to reduce nitrogen and phosphorus loadings from manure to soil and water resources. Third, pollution of water resources from nutrients supplied by manure to croplands will set parameters for developing public policies on the management of manure
    corecore