86 research outputs found

    Classification of high-voltage power line structures in low density ALS data acquired over broad non-urban areas

    Get PDF
    Airborne laser scanning (ALS) has gained importance over recent decades for multiple uses related to the cartography of landscapes. Processing ALS data over large areas for forest resource estimation and ecological assessments requires efficient algorithms to filter out some points from the raw data and remove human-made structures that would otherwise be mistaken for natural objects. In this paper, we describe an algorithm developed for the segmentation and cleaning of electrical network facilities in low density (2.5 to 13 points/m2) ALS point clouds. The algorithm was designed to identify transmission towers, conductor wires and earth wires from high-voltage power lines in natural landscapes. The method is based on two priors i.e. (1) the availability of a map of the high-voltage power lines across the area of interest and (2) knowledge of the type of transmission towers that hold the conductors along a given power line. It was tested on a network totalling 200 km of wires supported by 415 transmission towers with diverse topographies and topologies with an accuracy of 98.6%. This work will help further the automated detection capacity of power line structures, which had previously been limited to high density point clouds in small, urbanised areas. The method is open-source and available online

    The phenotypic and genetic effects of drought‑induced stress on apical growth, ring width, wood density and biomass in white spruce seedlings

    Get PDF
    Forest plantations play an important role in maintaining a supply of high-quality timber from managed forest. With an expected increase in the prevalence of drought in some forested areas, climate change increases concerns about future seedling growth. A promising approach to promote the suitability of plantation seedlings to current and future climate would be to use variation in growth and wood traits of trees under drought as selection criteria in tree breeding programs, especially at a young stage when they are most vulnerable to drought. We evaluated the genetic control of the growth and wood density response of white spruce clonal seedlings submitted to various drought conditions in a greenhouse experiment. By varying the watering treatment of 600 two year-old seedlings from 25 clones, we simulated three levels of drought-induced stress during two growing seasons. Apical and radial growth decreased markedly as the intensity of drought increased, whereas wood density tended to increase. We also developed a woody biomass index composed of wood density and ring area, which was observed to decrease slightly with increasing drought. There was important variation in all traits among clones and heritability tended to decrease with the intensity and duration of drought-induced stress, mainly for wood density and radial growth. However, the heritability of apical growth tended to increase under drought conditions. Our results show that the response of young white spruce clones to drought is highly variable, and together with the significant levels of heritability noted, the results indicate that multi-trait genetic selection for drought stress response at a young age could represent a promising approach to increase resilience to drought

    Correction, update, and enhancement of vectorial forestry road maps using ALS data, a pathfinder, and seven metrics

    Get PDF
    Accurate information about forestry roads is a key aspect of forest management in terms of economy (e.g. accessibility, cost, optimal path) and ecology (e.g. wildfire and wildlife protection). In Canada, and in fact, globally, most provincial, state or territory governments maintain vectorial information on the forestry roads under their jurisdiction. However, official maps are not always accurate, may lack road attributes of interest and are not always up-to-date. Airborne Laser Scanning (ALS) has become an established technology to accurately characterize and map broad territories by providing high density 3D point-clouds with, at least, 3 or 4 measurements per square meter. This paper addresses the problem of the automatic updating, fixing, and enhancement of vectorial forestry road maps over large landscapes (Âż10000 km2). For this purpose, we developed a production ready, documented and open-source software. From metrics derived from the point-cloud the method produces a raster of road probability. It then uses an existing, inaccurate, map of the road network to define approximate start and end points for each road. Then, a pathfinder retrieves the accurate road shape by computing the least cost path between the two points on the probability raster. Using the accurate road position given by the algorithm, road width and road state are then estimated based the on characteristics of the point-cloud. We demonstrate that our algorithm retrieves the centrelines of roads in a natively vectorial form with an error below 3 m in 95% of the roads using a fully automatic method. The accuracy of the road location allows us to derive other accurate measurements, including the state of the roads

    lidR : an R package for analysis of Airborne Laser Scanning (ALS) data

    Get PDF
    Airborne laser scanning (ALS) is a remote sensing technology known for its applicability in natural resources management. By quantifying the three-dimensional structure of vegetation and underlying terrain using laser technology, ALS has been used extensively for enhancing geospatial knowledge in the fields of forestry and ecology. Structural descriptions of vegetation provide a means of estimating a range of ecologically pertinent attributes, such as height, volume, and above-ground biomass. The efficient processing of large, often technically complex datasets requires dedicated algorithms and software. The continued promise of ALS as a tool for improving ecological understanding is often dependent on user-created tools, methods, and approaches. Due to the proliferation of ALS among academic, governmental, and private-sector communities, paired with requirements to address a growing demand for open and accessible data, the ALS community is recognising the importance of free and open-source software (FOSS) and the importance of user-defined workflows. Herein, we describe the philosophy behind the development of the lidR package. Implemented in the R environment with a C/C++ backend, lidR is free, open-source and cross-platform software created to enable simple and creative processing workflows for forestry and ecology communities using ALS data. We review current algorithms used by the research community, and in doing so raise awareness of current successes and challenges associated with parameterisation and common implementation approaches. Through a detailed description of the package, we address the key considerations and the design philosophy that enables users to implement user-defined tools. We also discuss algorithm choices that make the package representative of the ‘state-of-the-art' and we highlight some internal limitations through examples of processing time discrepancies. We conclude that the development of applications like lidR are of fundamental importance for developing transparent, flexible and open ALS tools to ensure not only reproducible workflows, but also to offer researchers the creative space required for the progress and development of the discipline

    Durability of bioprosthetic aortic valve replacement in patients under the age of 60 years - 1-year follow-up from the prospective INDURE registry.

    Get PDF
    OBJECTIVES We report 1-year safety and clinical outcomes in patients <60 years undergoing bioprosthetic surgical aortic valve intervention. METHODS The INSPIRIS RESILIA Durability Registry (INDURE) is a prospective, multicentre registry to assess clinical outcomes of patients <60 years. Patients with planned SAVR with or without concomitant replacement of the ascending aorta and/or coronary bypass surgery were included. Time-related valve safety, haemodynamic performance, and quality of life (QoL) at 1 year were assessed. RESULTS 421 patients were documented with a mean age of 53.5 years, 76.5% being male, and 27.2% in NYHA class III/IV. Outcomes within 30 days included cardiovascular-related mortality (0.7%), time-related valve safety (VARC-2; 5.8%), thromboembolic events (1.7%), valve-related life-threatening bleeding (VARC-2; 4.3%), and permanent pacemaker implantation (3.8%). QoL was significantly increased at 6 months and sustained at 1 year. Freedom from all-cause mortality at 1 year was 98.3% (95%CI 97.1;99.6) and 81.8% were NYHA I vs. 21.9% at baseline. No patient developed structural valve deterioration Stage 3 (VARC-3). Mean aortic pressure gradient was 12.6 mmHg at 1 year and effective orifice area was 1.9 cm2. CONCLUSIONS The 1-year data from the INSPIRIS RESILIA valve demonstrate good safety and excellent haemodynamic performance as well as an early QoL improvement. CLINICALTRIALS NUMBER NCT03666741

    Durability of bioprosthetic aortic valves in patients under the age of 60 years - Rationale and design of the international INDURE registry

    Get PDF
    Background: There is an ever-growing number of patients requiring aortic valve replacement (AVR). Limited data is available on the long-term outcomes and structural integrity of bioprosthetic valves in younger patients undergoing surgical AVR. Methods: The INSPIRIS RESILIA Durability Registry (INDURE) is a prospective, open-label, multicentre, international registry with a follow-up of 5 years to assess clinical outcomes of patients younger than 60 years who undergo surgical AVR using the INS

    Growth and characterization of gold catalyzed SiGe nanowires and alternative metal-catalyzed Si nanowires

    Get PDF
    The growth of semiconductor (SC) nanowires (NW) by CVD using Au-catalyzed VLS process has been widely studied over the past few years. Among others SC, it is possible to grow pure Si or SiGe NW thanks to these techniques. Nevertheless, Au could deteriorate the electric properties of SC and the use of other metal catalysts will be mandatory if NW are to be designed for innovating electronic. First, this article's focus will be on SiGe NW's growth using Au catalyst. The authors managed to grow SiGe NW between 350 and 400°C. Ge concentration (x) in Si1-xGex NW has been successfully varied by modifying the gas flow ratio: R = GeH4/(SiH4 + GeH4). Characterization (by Raman spectroscopy and XRD) revealed concentrations varying from 0.2 to 0.46 on NW grown at 375°C, with R varying from 0.05 to 0.15. Second, the results of Si NW growths by CVD using alternatives catalysts such as platinum-, palladium- and nickel-silicides are presented. This study, carried out on a LPCVD furnace, aimed at defining Si NW growth conditions when using such catalysts. Since the growth temperatures investigated are lower than the eutectic temperatures of these Si-metal alloys, VSS growth is expected and observed. Different temperatures and HCl flow rates have been tested with the aim of minimizing 2D growth which induces an important tapering of the NW. Finally, mechanical characterization of single NW has been carried out using an AFM method developed at the LTM. It consists in measuring the deflection of an AFM tip while performing approach-retract curves at various positions along the length of a cantilevered NW. This approach allows the measurement of as-grown single NW's Young modulus and spring constant, and alleviates uncertainties inherent in single point measurement

    C9ORF72 knockdown triggers FTD-like symptoms and cell pathology in mice

    Get PDF
    The GGGGCC intronic repeat expansion within C9ORF72 is the most common genetic cause of ALS and FTD. This mutation results in toxic gain of function through accumulation of expanded RNA foci and aggregation of abnormally translated dipeptide repeat proteins, as well as loss of function due to impaired transcription of C9ORF72. A number of in vivo and in vitro models of gain and loss of function effects have suggested that both mechanisms synergize to cause the disease. However, the contribution of the loss of function mechanism remains poorly understood. We have generated C9ORF72 knockdown mice to mimic C9-FTD/ALS patients haploinsufficiency and investigate the role of this loss of function in the pathogenesis. We found that decreasing C9ORF72 leads to anomalies of the autophagy/lysosomal pathway, cytoplasmic accumulation of TDP-43 and decreased synaptic density in the cortex. Knockdown mice also developed FTD-like behavioral deficits and mild motor phenotypes at a later stage. These findings show that C9ORF72 partial loss of function contributes to the damaging events leading to C9-FTD/ALS

    MAORY for ELT: preliminary design overview

    Get PDF
    MAORY is one of the approved instruments for the European Extremely Large Telescope. It is an adaptive optics module, enabling high-angular resolution observations in the near infrared by real-time compensation of the wavefront distortions due to atmospheric turbulence and other disturbances such as wind action on the telescope. An overview of the instrument design is given in this paper

    The MAORY first-light adaptive optics module for E-ELT

    Get PDF
    The MAORY adaptive optics module is part of the first light instrumentation suite for the E-ELT. The MAORY project phase B is going to start soon. This paper contains a system-level overview of the current instrument design
    • 

    corecore