121 research outputs found

    A scalable architecture for quantum computation with molecular nanomagnets

    Get PDF
    A proposal for a magnetic quantum processor that consists of individual molecular spins coupled to superconducting coplanar resonators and transmission lines is carefully examined. We derive a simple magnetic quantum electrodynamics Hamiltonian to describe the underlying physics. It is shown that these hybrid devices can perform arbitrary operations on each spin qubit and induce tunable interactions between any pair of them. The combination of these two operations ensures that the processor can perform universal quantum computations. The feasibility of this proposal is critically discussed using the results of realistic calculations, based on parameters of existing devices and molecular qubits. These results show that the proposal is feasible, provided that molecules with sufficiently long coherence times can be developed and accurately integrated into specific areas of the device. This architecture has an enormous potential for scaling up quantum computation thanks to the microscopic nature of the individual constituents, the molecules, and the possibility of using their internal spin degrees of freedom.Comment: 27 pages, 6 figure

    Coating of conducting and insulating threads with porous mof particles through langmuir-blodgett technique

    Get PDF
    The Langmuir-Blodgett (LB) method is a well-known deposition technique for the fabrication of ordered monolayer and multilayer thin films of nanomaterials onto different substrates that plays a critical role in the development of functional devices for various applications. This paper describes detailed studies about the best coating configuration for nanoparticles of a porous metal-organic framework (MOF) onto both insulating or conductive threads and nylon fiber. We design and fabricate customized polymethylmethacrylate sheets (PMMA) holders to deposit MOF layers onto the threads or fiber using the LB technique. Two different orientations, namely, horizontal and vertical, are used to deposit MIL-96(Al) monolayer films onto five different types of threads and nylon fiber. These studies show that LB film formation strongly depends on deposition orientation and the type of threads or fiber. Among all the samples tested, cotton thread and nylon fiber with vertical deposition show more homogenous monolayer coverage. In the case of conductive threads, the MOF particles tend to aggregate between the conductive thread’s fibers instead of forming a continuous monolayer coating. Our results show a significant contribution in terms of MOF monolayer deposition onto single fiber and threads that will contribute to the fabrication of single fiber or thread-based devices in the future

    Molecular prototypes for spin-based CNOT quantum gates

    Get PDF
    We show that a chemically engineered structural asymmetry in [Tb2] molecular clusters renders the two weakly coupled Tb3+ spin qubits magnetically inequivalent. The magnetic energy level spectrum of these molecules meets then all conditions needed to realize a universal CNOT quantum gate.Comment: 4 pages, 4 figure

    Photoactivation of the cytotoxic properties of platinum(II) complexes through ligand photoswitching

    Get PDF
    The development of photoactivatable metal complexes with potential anticancer properties is a topical area of current investigation. Photoactivated chemotherapy using coordination compounds is typically based on photochemical processes occurring at the metal center. In the present study, an innovative approach is applied that takes advantage of the remarkable photochemical properties of diarylethenes. Following a proof-of-concept study with two complexes, namely, C1 and C2, a series of additional platinum(II) complexes from dithienylcyclopentene-based ligands was designed and prepared. Like C1 and C2, these new coordination compounds exhibit two thermally stable, interconvertible photoisomers that display distinct properties. The photochemical behavior of ligands L3-L7 has been analyzed by 1H NMR and UV-vis spectroscopies. Subsequently, the corresponding platinum(II) complexes C3-C7 were synthesized and fully characterized, including by single-crystal X-ray diffraction for some of them. Next, the interaction of each photoisomer (i.e., containing the open or closed ligand) of the metal complexes with DNA was examined thoroughly using various techniques, revealing their distinct DNA-binding modes and affinities, as observed for the earlier compounds C1 and C2. The antiproliferative activity of the two forms of the complexes was then assessed with five cancer cell lines and compared with that of C1 and C2, which supported the use of such diarylethene-based systems for the generation of a new class of potential photochemotherapeutic metallodrugs

    A dissymmetric [Gd2] coordination molecular dimer hosting six addressable spin qubits

    Get PDF
    Artificial magnetic molecules can host several spin qubits, which could then implement small-scale algorithms. In order to become of practical use, such molecular spin processors need to increase the available computational space and warrant universal operations. Here, we design, synthesize and fully characterize dissymetric molecular dimers hosting either one or two Gadolinium(III) ions. The strong sensitivity of Gadolinium magnetic anisotropy to its local coordination gives rise to different zero-field splittings at each metal site. As a result, the [LaGd] and [GdLu] complexes provide realizations of distinct spin qudits with eight unequally spaced levels. In the [Gd2] dimer, these properties are combined with a Gd-Gd magnetic interaction, sufficiently strong to lift all level degeneracies, yet sufficiently weak to keep all levels within an experimentally accessible energy window. The spin Hamiltonian of this dimer allows a complete set of operations to act as a 64-dimensional all-electron spin qudit, or, equivalently, as six addressable qubits. Electron paramagnetic resonance experiments show that resonant transitions between different spin states can be coherently controlled, with coherence times TM of the order of 1 ¬Ķs limited by hyperfine interactions. Coordination complexes with embedded quantum functionalities are promising building blocks for quantum computation and simulation hybrid platforms

    Crystal size dependence of dipolar ferromagnetic order between Mn6 molecular nanomagnets

    Get PDF
    We study how crystal size influences magnetic ordering in arrays of molecular nanomagnets coupled by dipolar interactions. Compressed fluid techniques have been applied to synthesize crystals of Mn6 molecules (spin S = 12) with sizes ranging from 28 ¬Ķm down to 220 nm. The onset of ferromagnetic order and the spin thermalization rates have been studied by means of ac susceptibility measurements. We find that the ordered phase remains ferromagnetic, as in the bulk, but the critical temperature Tc decreases with crystal size. Simple magnetostatic energy calculations, supported by Monte Carlo simulations, account for the observed drop in Tc in terms of the minimum attainable energy for finite-sized magnetic domains limited by the crystal boundaries. Frequency-dependent susceptibility measurements give access to the spin dynamics. Although magnetic relaxation remains dominated by individual spin flips, the onset of magnetic order leads to very long spin thermalization time scales. The results show that size influences the magnetism of dipolar systems with as many as 1011 spins and are relevant for the interpretation of quantum simulations performed on finite lattices

    A heterometallic [LnLn′Ln] lanthanide complex as a qubit with embedded quantum error correction

    Get PDF
    We show that a [Er-Ce-Er] molecular trinuclear coordination compound is a promising platform to implement the three-qubit quantum error correction code protecting against pure dephasing, the most important error in magnetic molecules. We characterize it by preparing the [Lu-Ce-Lu] and [Er-La-Er] analogues, which contain only one of the two types of qubit, and by combining magnetometry, low-temperature specific heat and electron paramagnetic resonance measurements on both the elementary constituents and the trimer. Using the resulting parameters, we demonstrate by numerical simulations that the proposed molecular device can efficiently suppress pure dephasing of the spin qubits

    Sequential Electron Transport and Vibrational Excitations in an Organic Molecule Coupled to Few-Layer Graphene Electrodes

    Get PDF
    Graphene electrodes are promising candidates to improvereproducibility and stability in molecular electronics through new electrode‚ąímolecule anchoring strategies. Here we report sequentialelectron transport in few-layer graphene transistors containing individualcurcuminoid-based molecules anchored to the electrodes via ŌÄ ‚ąíŌÄ orbital bonding. We show the coexistence of inelastic co-tunneling excitations with single-electron transport physics due to an intermediate molecule‚ąíelectrode coupling; we argue that an intermediate electron‚ąíphononcoupling is the origin of these vibrational-assisted excitations. Theseexperimental observations are complemented with density functionaltheory calculations to model electron transport and the interaction between electrons and vibrational modes of thecurcuminoid molecule. We Ô¨Ānd that the calculated vibrational modes of the molecule are in agreement with theexperimentally observed excitation

    NMR Experiments on Rotating Superfluid 3He-A : Evidence for Vorticity

    Get PDF
    Experiments on rotating superfluid 3He-A in an open cylindrical geometry show a change in the NMR line shape as a result of rotation: The amplitude of the peak decreases in proportion to f(T)g(ő©), where ő© is the angular velocity of rotation; at the same time the line broadens. Near Tc, f(T) is a linear function of 1‚ąíT/Tc. At small velocities g(ő©)‚ąĚő©. These observations are consistent with the existence of vortices in rotating 3He-A.Peer reviewe
    • ‚Ķ