473 research outputs found

    Ultra-endurance athletic performance suggests that energetics drive human morphological thermal adaptation

    Get PDF
    Both extinct and extant hominin populations display morphological features consistent with Bergmann's and Allen's Rules. However, the functional implications of the morphologies described by these ecological laws are poorly understood. We examined this through the lens of endurance running. Previous research concerning endurance running has focused on locomotor energetic economy. We considered a less-studied dimension of functionality, thermoregulation. The performance of male ultra-marathon runners (n = 88) competing in hot and cold environments was analysed with reference to expected thermoregulatory energy costs and the optimal morphologies predicted by Bergmann's and Allen's Rules. Ecogeographical patterning supporting both principles was observed in thermally challenging environments. Finishers of hot-condition events had significantly longer legs than finishers of cold-condition events. Furthermore, hot-condition finishers had significantly longer legs than those failing to complete hot-condition events. A degree of niche-picking was evident; athletes may have tailored their event entry choices in accordance with their previous race experiences. We propose that the interaction between prolonged physical exertion and hot or cold climates may induce powerful selective pressures driving morphological adaptation. The resulting phenotypes reduce thermoregulatory energetic expenditure, allowing diversion of energy to other functional outcomes such as faster running

    A metatranscriptomic approach to explore longitudinal tissue specimens from non-healing diabetes related foot ulcers

    Get PDF
    Cellular mechanisms and/or microbiological interactions which contribute to chronic diabetes related foot ulcers (DRFUs) were explored using serially collected tissue specimens from chronic DRFUs and control healthy foot skin. Total RNA was isolated for next-generation sequencing. We found differentially expressed genes (DEGs) and enriched hallmark gene ontology biological processes upregulated in chronic DRFUs which primarily functioned in the host immune response including: (i) Inflammatory response; (ii) TNF signalling via NFKB; (iii) IL6 JAK-STAT3 signalling; (iv) IL2 STAT5 signalling and (v) Reactive oxygen species. A temporal analysis identified RN7SL1 signal recognition protein and IGHG4 immunoglobulin protein coding genes as being the most upregulated genes after the onset of treatment. Testing relative temporal changes between healing and non-healing DRFUs identified progressive upregulation in healed wounds of CXCR5 and MS4A1 (CD20), both canonical markers of lymphocytes (follicular B cells/follicular T helper cells and B cells, respectively). Collectively, our RNA-seq data provides insights into chronic DRFU pathogenesis

    Quantification of the energy gap in young overweight children. The PIAMA birth cohort study

    Get PDF
    Background: Overweight develops gradually as a result of a long term surplus on the balance between energy intake and energy expenditure. Aim of this study was to quantify the positive energy balance responsible for excess body weight gain (energy gap) in young overweight children. Methods. Reported data on weight and height were used of 2190 Dutch children participating in the PIAMA birth cohort study. Accumulated body energy was estimated from the weight gain observed between age 2 and age 5-7. Energy gap was calculated as the difference in positive energy balance between children with and without overweight assuming an energy efficiency of 50%. Results: Ten percent of the children were overweight at the age of 5-7 years. For these children, median weight gain during 4-years follow-up was 13.3 kg, as compared to 8.5 kg in the group of children who had a normal weight at the end of the study. A daily energy gap of 289-320 kJ (69-77 kcal) was responsible for the excess weight gain or weight maintenance in the majority of the children who were overweight at the age of 5-7 years. The increase in daily energy requirement to maintain the 4.8 kilograms excess weight gain among overweight children at the end of the study was approximately 1371 kJ. Conclusions: An energy gap of about 289-320 kJ per day over a number of years can make the difference between normal weight and overweight in young children. Closing the energy gap in overweight children can be achieved by r

    Tropical cyclone integrated kinetic energy in an ensemble of HighResMIP simulations

    Get PDF
    This study investigates tropical cyclone integrated kinetic energy, a measure which takes into account the intensity and the size of the storms and which is closely associated with their damage potential, in three different global climate models integrated following the HighResMIP protocol. In particular, the impact of horizontal resolution and of the ocean coupling are assessed. We find that, while the increase in resolution results in smaller and more intense storms, the integrated kinetic energy of individual cyclones remains relatively similar between the two configurations. On the other hand, atmosphere-ocean coupling tends to reduce the size and the intensity of the storms, resulting in lower integrated kinetic energy in that configuration. Comparing cyclone integrated kinetic energy between a present and a future scenario did not reveal significant differences between the two periods

    Studying Parton Energy Loss in Heavy-Ion Collisions via Direct-Photon and Charged-Particle Azimuthal Correlations

    Get PDF
    Charged-particle spectra associated with direct photon (γdir\gamma_{dir} ) and π0\pi^0 are measured in pp+pp and Au+Au collisions at center-of-mass energy sNN=200\sqrt{s_{_{NN}}}=200 GeV with the STAR detector at RHIC. A hower-shape analysis is used to partially discriminate between γdir\gamma_{dir} and π0\pi^0. Assuming no associated charged particles in the γdir\gamma_{dir} direction (near side) and small contribution from fragmentation photons (γfrag\gamma_{frag}), the associated charged-particle yields opposite to γdir\gamma_{dir} (away side) are extracted. At mid-rapidity (η<0.9|\eta|<0.9) in central Au+Au collisions, charged-particle yields associated with γdir\gamma_{dir} and π0\pi^0 at high transverse momentum (8<pTtrig<168< p_{T}^{trig}<16 GeV/cc) are suppressed by a factor of 3-5 compared with pp + pp collisions. The observed suppression of the associated charged particles, in the kinematic range η<1|\eta|<1 and 3<pTassoc<163< p_{T}^{assoc} < 16 GeV/cc, is similar for γdir\gamma_{dir} and π0\pi^0, and independent of the γdir\gamma_{dir} energy within uncertainties. These measurements indicate that the parton energy loss, in the covered kinematic range, is insensitive to the parton path length.Comment: submitted to Phys. Rev. Lett, 6 pages, 4 figure

    Observation of charge-dependent azimuthal correlations and possible local strong parity violation in heavy ion collisions

    Get PDF
    Parity-odd domains, corresponding to non-trivial topological solutions of the QCD vacuum, might be created during relativistic heavy-ion collisions. These domains are predicted to lead to charge separation of quarks along the orbital momentum of the system created in non-central collisions. To study this effect, we investigate a three particle mixed harmonics azimuthal correlator which is a \P-even observable, but directly sensitive to the charge separation effect. We report measurements of this observable using the STAR detector in Au+Au and Cu+Cu collisions at sNN\sqrt{s_{NN}}=200 and 62~GeV. The results are presented as a function of collision centrality, particle separation in rapidity, and particle transverse momentum. A signal consistent with several of the theoretical expectations is detected in all four data sets. We compare our results to the predictions of existing event generators, and discuss in detail possible contributions from other effects that are not related to parity violation.Comment: 17 pages, 14 figures, as accepted for publication in Physical Review C

    Enhanced strange baryon production in Au+Au collisions compared to p+p at sqrts = 200 GeV

    Get PDF
    We report on the observed differences in production rates of strange and multi-strange baryons in Au+Au collisions at sqrts = 200 GeV compared to pp interactions at the same energy. The strange baryon yields in Au+Au collisions, then scaled down by the number of participating nucleons, are enhanced relative to those measured in pp reactions. The enhancement observed increases with the strangeness content of the baryon, and increases for all strange baryons with collision centrality. The enhancement is qualitatively similar to that observed at lower collision energy sqrts =17.3 GeV. The previous observations are for the bulk production, while at intermediate pT, 1 < pT< 4 GeV/c, the strange baryons even exceed binary scaling from pp yields.Comment: 7 pages, 4 figures. Printed in PR

    Charged and strange hadron elliptic flow in Cu+Cu collisions at sNN\sqrt{s_{NN}} = 62.4 and 200 GeV

    Get PDF
    We present the results of an elliptic flow analysis of Cu+Cu collisions recorded with the STAR detector at 62.4 and 200GeV. Elliptic flow as a function of transverse momentum is reported for different collision centralities for charged hadrons and strangeness containing hadrons KS0K_{S}^{0}, Λ\Lambda, Ξ\Xi, ϕ\phi in the midrapidity region eta<1.0|eta|<1.0. Significant reduction in systematic uncertainty of the measurement due to non-flow effects has been achieved by correlating particles at midrapidity, η<1.0|\eta|<1.0, with those at forward rapidity, 2.5<η<4.02.5<|\eta|<4.0. We also present azimuthal correlations in p+p collisions at 200 GeV to help estimating non-flow effects. To study the system-size dependence of elliptic flow, we present a detailed comparison with previously published results from Au+Au collisions at 200 GeV. We observe that v2v_{2}(pTp_{T}) of strange hadrons has similar scaling properties as were first observed in Au+Au collisions, i.e.: (i) at low transverse momenta, pT<2GeV/cp_T<2GeV/c, v2v_{2} scales with transverse kinetic energy, mTmm_{T}-m, and (ii) at intermediate pTp_T, 2<pT<4GeV/c2<p_T<4GeV/c, it scales with the number of constituent quarks, nqn_q. We have found that ideal hydrodynamic calculations fail to reproduce the centrality dependence of v2v_{2}(pTp_{T}) for KS0K_{S}^{0} and Λ\Lambda. Eccentricity scaled v2v_2 values, v2/ϵv_{2}/\epsilon, are larger in more central collisions, suggesting stronger collective flow develops in more central collisions. The comparison with Au+Au collisions which go further in density shows v2/ϵv_{2}/\epsilon depend on the system size, number of participants NpartN_{part}. This indicates that the ideal hydrodynamic limit is not reached in Cu+Cu collisions, presumably because the assumption of thermalization is not attained.Comment: 18 pages, 14 figure

    Measurements of ϕ\phi meson production in relativistic heavy-ion collisions at RHIC

    Get PDF
    We present results for the measurement of ϕ\phi meson production via its charged kaon decay channel ϕK+K\phi \to K^+K^- in Au+Au collisions at sNN=62.4\sqrt{s_{_{NN}}}=62.4, 130, and 200 GeV, and in p+pp+p and dd+Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV from the STAR experiment at the BNL Relativistic Heavy Ion Collider (RHIC). The midrapidity (y<0.5|y|<0.5) ϕ\phi meson transverse momentum (pTp_{T}) spectra in central Au+Au collisions are found to be well described by a single exponential distribution. On the other hand, the pTp_{T} spectra from p+pp+p, dd+Au and peripheral Au+Au collisions show power-law tails at intermediate and high pTp_{T} and are described better by Levy distributions. The constant ϕ/K\phi/K^- yield ratio vs beam species, collision centrality and colliding energy is in contradiction with expectations from models having kaon coalescence as the dominant mechanism for ϕ\phi production at RHIC. The Ω/ϕ\Omega/\phi yield ratio as a function of pTp_{T} is consistent with a model based on the recombination of thermal ss quarks up to pT4p_{T}\sim 4 GeV/cc, but disagrees at higher transverse momenta. The measured nuclear modification factor, RdAuR_{dAu}, for the ϕ\phi meson increases above unity at intermediate pTp_{T}, similar to that for pions and protons, while RAAR_{AA} is suppressed due to the energy loss effect in central Au+Au collisions. Number of constituent quark scaling of both RcpR_{cp} and v2v_{2} for the ϕ\phi meson with respect to other hadrons in Au+Au collisions at sNN\sqrt{s_{_{NN}}}=200 GeV at intermediate pTp_{T} is observed. These observations support quark coalescence as being the dominant mechanism of hadronization in the intermediate pTp_{T} region at RHIC.Comment: 22 pages, 21 figures, 4 table
    corecore