52 research outputs found

    Terrane history of the Iapetus Ocean as preserved in the northern Appalachians and western Caledonides

    Get PDF
    The Iapetus Ocean was the first ancient ocean to be identified following the development of plate tectonics; its history has been fundamental in relating orogenesis and plate motion. The ocean probably formed following 3-way rifting between Laurentia, Baltica, and Amazonia – West Africa (a block that became incorporated in Gondwana). Closure of the ocean trapped numerous terranes during the development of the Appalachian–Caledonide Orogen. Subsequent deformation, including late Paleozoic strike slip, transpression, and transtension, and Mesozoic stretching during Pangea breakup, must be taken into account in models for orogen development. Traditional analyses of Iapetan terranes have focussed on Cambrian sedimentary successions, and on isotopic criteria, to classify terranes into larger domains: Ganderia, Avalonia and Megumia. Detrital zircon data show that these domains did not cross the Iapetus as single entities, while paleomagnetic data reveal significant vertical-axis terrane rotations. We here review and interpret 17 paleomagnetic poles and >350 published detrital zircon data sets from the northern Appalachians and western Caledonides, using consistent and rigorous criteria for the selection and presentation of data. We place these data on an integrated stratigraphic chart to show timing relations and to seek constraints on the provenance and travel of terranes in the Iapetus Ocean. We distinguish groups of terranes that likely travelled together as terrane assemblages. In the Taconian/Grampian Orogeny, Furongian to Katian continent–arc collision involved off-margin blocks along the hyperextended Laurentian margin. In New England, early Taconian collision by 475 Ma involved the Gondwana-derived Moretown assemblage. An assemblage of the Bronson and Popelogan arc terranes probably arrived at the main Laurentian margin 25-30 Myr later. Subduction polarity reversal then led to the progressive accretion of additional terrane assemblages (Salinian Orogeny). The Miramichi–Victoria assemblage arrived close to the Ordovician–Silurian boundary. The Miramichi terrane underwent partial subduction in the QuĂ©bec re-entrant, whereas the Victoria terrane was juxtaposed with the Newfoundland promontory without major metamorphism. In mid-Silurian time, an assemblage including the Gander terrane of Newfoundland and related portions of Britain and Ireland was accreted to Laurentia, along with Baltica (Scandian Orogeny). The St. Croix – La Poile assemblage may have been accreted slightly later, but is distinguished by the development of a Silurian arc–backarc system (coastal igneous belt) above a northwest-dipping subduction zone. The Avalon–Brookville assemblage encountered this system in PƙídolĂ­ to Middle Devonian time (Acadian Orogeny), leading to the collapse of the backarc basin and northwest-vergent thrust emplacement onto Laurentia during sinistral transpression in the Appalachian Orogen. Acadian deformation involved mainly sinistral strike slip in Britain and Ireland. Several of the terranes that were accreted to the Laurentian margin carried internal records of earlier deformation that took place near Amazonia – West Africa in Early Ordovician time and earlier (Monian/Penobscottian Orogeny). The Iapetus Ocean thus contained a complex array of terranes, small ocean basins, arcs, and previously emplaced ophiolites analogous to modern southeast Asia. It closed to form a complex array of sutures in an orogen within which no single Iapetus suture can be clearly identified

    In-situ estimation of ice crystal properties at the South Pole using LED calibration data from the IceCube Neutrino Observatory

    Get PDF
    The IceCube Neutrino Observatory instruments about 1 km3 of deep, glacial ice at the geographic South Pole using 5160 photomultipliers to detect Cherenkov light emitted by charged relativistic particles. A unexpected light propagation effect observed by the experiment is an anisotropic attenuation, which is aligned with the local flow direction of the ice. Birefringent light propagation has been examined as a possible explanation for this effect. The predictions of a first-principles birefringence model developed for this purpose, in particular curved light trajectories resulting from asymmetric diffusion, provide a qualitatively good match to the main features of the data. This in turn allows us to deduce ice crystal properties. Since the wavelength of the detected light is short compared to the crystal size, these crystal properties do not only include the crystal orientation fabric, but also the average crystal size and shape, as a function of depth. By adding small empirical corrections to this first-principles model, a quantitatively accurate description of the optical properties of the IceCube glacial ice is obtained. In this paper, we present the experimental signature of ice optical anisotropy observed in IceCube LED calibration data, the theory and parametrization of the birefringence effect, the fitting procedures of these parameterizations to experimental data as well as the inferred crystal properties.</p

    Conditional normalizing flows for IceCube event reconstruction

    Get PDF

    Galactic Core-Collapse Supernovae at IceCube: “Fire Drill” Data Challenges and follow-up

    Get PDF
    The next Galactic core-collapse supernova (CCSN) presents a once-in-a-lifetime opportunity to make astrophysical measurements using neutrinos, gravitational waves, and electromagnetic radiation. CCSNe local to the Milky Way are extremely rare, so it is paramount that detectors are prepared to observe the signal when it arrives. The IceCube Neutrino Observatory, a gigaton water Cherenkov detector below the South Pole, is sensitive to the burst of neutrinos released by a Galactic CCSN at a level >10σ. This burst of neutrinos precedes optical emission by hours to days, enabling neutrinos to serve as an early warning for follow-up observation. IceCube\u27s detection capabilities make it a cornerstone of the global network of neutrino detectors monitoring for Galactic CCSNe, the SuperNova Early Warning System (SNEWS 2.0). In this contribution, we describe IceCube\u27s sensitivity to Galactic CCSNe and strategies for operational readiness, including "fire drill" data challenges. We also discuss coordination with SNEWS 2.0

    All-Energy Search for Solar Atmospheric Neutrinos with IceCube

    Get PDF
    The interaction of cosmic rays with the solar atmosphere generates a secondary flux of mesons that decay into photons and neutrinos – the so-called solar atmospheric flux. Although the gamma-ray component of this flux has been observed in Fermi-LAT and HAWC Observatory data, the neutrino component remains undetected. The energy distribution of those neutrinos follows a soft spectrum that extends from the GeV to the multi-TeV range, making large Cherenkov neutrino telescopes a suitable for probing this flux. In this contribution, we will discuss current progress of a search for the solar neutrino flux by the IceCube Neutrino Observatory using all available data since 2011. Compared to the previous analysis which considered only high-energy muon neutrino tracks, we will additionally consider events produced by all flavors of neutrinos down to GeV-scale energies. These new events should improve our analysis sensitivity since the flux falls quickly with energy. Determining the magnitude of the neutrino flux is essential, since it is an irreducible background to indirect solar dark matter searches

    TXS 0506+056 with Updated IceCube Data

    Get PDF
    Past results from the IceCube Collaboration have suggested that the blazar TXS 0506+056 is a potential source of astrophysical neutrinos. However, in the years since there have been numerous updates to event processing and reconstruction, as well as improvements to the statistical methods used to search for astrophysical neutrino sources. These improvements in combination with additional years of data have resulted in the identification of NGC 1068 as a second neutrino source candidate. This talk will re-examine time-dependent neutrino emission from TXS 0506+056 using the most recent northern-sky data sample that was used in the analysis of NGC 1068. The results of using this updated data sample to obtain a significance and flux fit for the 2014 TXS 0506+056 "untriggered" neutrino flare are reported

    Searches for IceCube Neutrinos Coincident with Gravitational Wave Events

    Get PDF

    Recent neutrino oscillation results with the IceCube experiment

    Get PDF
    The IceCube South Pole Neutrino Observatory is a Cherenkov detector instrumented in a cubic kilometer of ice at the South Pole. IceCube’s primary scientific goal is the detection of TeV neutrino emissions from astrophysical sources. At the lower center of the IceCube array, there is a subdetector called DeepCore, which has a denser configuration that makes it possible to lower the energy threshold of IceCube and observe GeV-scale neutrinos, opening the window to atmospheric neutrino oscillations studies. Advances in physics sensitivity have recently been achieved by employing Convolutional Neural Networks to reconstruct neutrino interactions in the DeepCore detector. In this contribution, the recent IceCube result from the atmospheric muon neutrino disappearance analysis using the CNN-reconstructed neutrino sample are presented and compared to the existing worldwide measurements

    Angular dependence of the atmospheric neutrino flux with IceCube data

    Get PDF
    IceCube Neutrino Observatory, the cubic kilometer detector embedded in ice of the geographic South Pole, is capable of detecting particles from several GeV up to PeV energies enabling precise neutrino spectrum measurement. The diffuse neutrino flux can be subdivided into three components: astrophysical, from extraterrestrial sources; conventional, from pion and kaon decays in atmospheric Cosmic Ray cascades; and the yet undetected prompt component from the decay of charmed hadrons. A particular focus of this work is to test the predicted angular dependence of the atmospheric neutrino flux using an unfolding method. Unfolding is a set of methods aimed at determining a value from related quantities in a model-independent way, eliminating the influence of several assumptions made in the process. In this work, we unfold the muon neutrino energy spectrum and employ a novel technique for rebinning the observable space to ensure sufficient event numbers within the low statistic region at the highest energies. We present the unfolded energy and zenith angle spectrum reconstructed from IceCube data and compare the result with model expectations and previous measurements

    Searching for high-energy neutrinos from shock-interaction powered supernovae with the IceCube Neutrino Observatory

    Get PDF
    • 

    corecore