49 research outputs found

    Changing genetic architecture of body mass index from infancy to early adulthood : an individual based pooled analysis of 25 twin cohorts

    Get PDF
    Publisher Copyright: © 2022, The Author(s).Background: Body mass index (BMI) shows strong continuity over childhood and adolescence and high childhood BMI is the strongest predictor of adult obesity. Genetic factors strongly contribute to this continuity, but it is still poorly known how their contribution changes over childhood and adolescence. Thus, we used the genetic twin design to estimate the genetic correlations of BMI from infancy to adulthood and compared them to the genetic correlations of height. Methods: We pooled individual level data from 25 longitudinal twin cohorts including 38,530 complete twin pairs and having 283,766 longitudinal height and weight measures. The data were analyzed using Cholesky decomposition offering genetic and environmental correlations of BMI and height between all age combinations from 1 to 19 years of age. Results: The genetic correlations of BMI and height were stronger than the trait correlations. For BMI, we found that genetic correlations decreased as the age between the assessments increased, a trend that was especially visible from early to middle childhood. In contrast, for height, the genetic correlations were strong between all ages. Age-to-age correlations between environmental factors shared by co-twins were found for BMI in early childhood but disappeared altogether by middle childhood. For height, shared environmental correlations persisted from infancy to adulthood. Conclusions: Our results suggest that the genes affecting BMI change over childhood and adolescence leading to decreasing age-to-age genetic correlations. This change is especially visible from early to middle childhood indicating that new genetic factors start to affect BMI in middle childhood. Identifying mediating pathways of these genetic factors can open possibilities for interventions, especially for those children with high genetic predisposition to adult obesity.Peer reviewe

    Changing genetic architecture of body mass index from infancy to early adulthood: an individual based pooled analysis of 25 twin cohorts

    Get PDF
    BACKGROUND: Body mass index (BMI) shows strong continuity over childhood and adolescence and high childhood BMI is the strongest predictor of adult obesity. Genetic factors strongly contribute to this continuity, but it is still poorly known how their contribution changes over childhood and adolescence. Thus, we used the genetic twin design to estimate the genetic correlations of BMI from infancy to adulthood and compared them to the genetic correlations of height. METHODS: We pooled individual level data from 25 longitudinal twin cohorts including 38,530 complete twin pairs and having 283,766 longitudinal height and weight measures. The data were analyzed using Cholesky decomposition offering genetic and environmental correlations of BMI and height between all age combinations from 1 to 19 years of age. RESULTS: The genetic correlations of BMI and height were stronger than the trait correlations. For BMI, we found that genetic correlations decreased as the age between the assessments increased, a trend that was especially visible from early to middle childhood. In contrast, for height, the genetic correlations were strong between all ages. Age-to-age correlations between environmental factors shared by co-twins were found for BMI in early childhood but disappeared altogether by middle childhood. For height, shared environmental correlations persisted from infancy to adulthood. CONCLUSIONS: Our results suggest that the genes affecting BMI change over childhood and adolescence leading to decreasing age-to-age genetic correlations. This change is especially visible from early to middle childhood indicating that new genetic factors start to affect BMI in middle childhood. Identifying mediating pathways of these genetic factors can open possibilities for interventions, especially for those children with high genetic predisposition to adult obesity

    Indurated soil nodules: a vestige of ancient agricultural practices?

    Get PDF
    The identification of controlled fires in ancient agricultural systems is important for understanding how past societies managed the landscape. Although the use of fire in agriculture is documented in recent historical records, and combustion markers can persist in soils over a long time scale, this is a complex issue because combustion traits in general are ubiquitous. Archaeopedological surveys undertaken in an ancient forest in Burgundy (France) have led to the recovery of several red indurated nodules scattered in the soils. Gallo-Roman housing structures and parcels were recognized using light detection and ranging mapping, stimulating questions about the understanding of the nature of these nodules. Elemental and structural analyses by X-ray fluorescence and X-ray diffraction (XRD) confirmed the local origin of these features by comparing their composition with on-site sediments, and thermoluminescence dating placed the samples in the Medieval period. The results cast light on the nature of the nodules and how they can be related to controlled fires used in agricultural practices. Even though questions remain about which processes lead to the formation of the nodules, the firing temperature estimated via XRD analysis seems to be in agreement with that used in the ‚Äúparing-and-burning‚ÄĚ technique. The present study provides new information about medieval agriculture practices from the 10th to the 12th centuries CE and shows how past societies managed the opening and maintenance of agricultural fields using natural resources and ‚Äúarchaeological‚ÄĚ remains from the antique period

    Heterogeneous contributions of change in population distribution of body mass index to change in obesity and underweight

    Get PDF
    From 1985 to 2016, the prevalence of underweight decreased, and that of obesity and severe obesity increased, in most regions, with significant variation in the magnitude of these changes across regions. We investigated how much change in mean body mass index (BMI) explains changes in the prevalence of underweight, obesity, and severe obesity in different regions using data from 2896 population-based studies with 187 million participants. Changes in the prevalence of underweight and total obesity, and to a lesser extent severe obesity, are largely driven by shifts in the distribution of BMI, with smaller contributions from changes in the shape of the distribution. In East and Southeast Asia and sub-Saharan Africa, the underweight tail of the BMI distribution was left behind as the distribution shifted. There is a need for policies that address all forms of malnutrition by making healthy foods accessible and affordable, while restricting unhealthy foods through fiscal and regulatory restrictions

    Heterogeneous contributions of change in population distribution of body mass index to change in obesity and underweight

    No full text
    From 1985 to 2016, the prevalence of underweight decreased, and that of obesity and severe obesity increased, in most regions, with significant variation in the magnitude of these changes across regions. We investigated how much change in mean body mass index (BMI) explains changes in the prevalence of underweight, obesity, and severe obesity in different regions using data from 2896 population-based studies with 187 million participants. Changes in the prevalence of underweight and total obesity, and to a lesser extent severe obesity, are largely driven by shifts in the distribution of BMI, with smaller contributions from changes in the shape of the distribution. In East and Southeast Asia and sub-Saharan Africa, the underweight tail of the BMI distribution was left behind as the distribution shifted. There is a need for policies that address all forms of malnutrition by making healthy foods accessible and affordable, while restricting unhealthy foods through fiscal and regulatory restrictions

    THE EFFECTS OF POSSIBLE CONTAMINATION ON THE RADIOCARBON DATING OF THE DEAD SEA SCROLLS II THE EFFECTS OF POSSIBLE CONTAMINATION ON THE RADIOCARBON DATING OF THE DEAD SEA SCROLLS II: EMPIRICAL METHODS TO REMOVE CASTOR OIL AND SUGGESTIONS FOR THE EFFECTS O

    No full text
    ABSTRACT. While kept at the Rockefeller Museum in East Jerusalem, many Dead Sea Scroll fragments were exposed to castor oil by the original team of editors in the course of cleaning the parchments. Castor oil must be regarded as a serious contaminant in relation to radiocarbon dating. If modern castor oil is present and is not removed prior to dating, the 14 C dates will be skewed artificially towards modern values. In Rasmussen et al

    Height and body-mass index trajectories of school-aged children and adolescents from 1985 to 2019 in 200 countries and territories: a pooled analysis of 2181 population-based studies with 65 million participants