53 research outputs found

    WARP liquid argon detector for dark matter survey

    Get PDF
    The WARP programme is a graded programme intended to search for cold Dark Matter in the form of WIMP's. These particles may produce via weak interactions nuclear recoils in the energy range 10-100 keV. A cryogenic noble liquid like argon, already used in the realization of very large detector, permits the simultaneous detection of both ionisation and scintillation induced by an interaction, suggesting the possibility of discriminating between nuclear recoils and electrons mediated events. A 2.3 litres two-phase argon detector prototype has been used to perform several tests on the proposed technique. Next step is the construction of a 100 litres sensitive volume device with potential sensitivity a factor 100 better than presently existing experiments.Comment: Proceeding of the 6th UCLA Symposium on Sources and detection of Dark Matter and dark Energy in the Univers

    A new, very massive modular Liquid Argon Imaging Chamber to detect low energy off-axis neutrinos from the CNGS beam. (Project MODULAr)

    Full text link
    The paper is considering an opportunity for the CERN/GranSasso (CNGS) neutrino complex, concurrent time-wise with T2K and NOvA, to search for theta_13 oscillations and CP violation. Compared with large water Cherenkov (T2K) and fine grained scintillators (NOvA), the LAr-TPC offers a higher detection efficiency and a lower backgrounds, since virtually all channels may be unambiguously recognized. The present proposal, called MODULAr, describes a 20 kt fiducial volume LAr-TPC, following very closely the technology developed for the ICARUS-T60o, and is focused on the following activities, for which we seek an extended international collaboration: (1) the neutrino beam from the CERN 400 GeV proton beam and an optimised horn focussing, eventually with an increased intensity in the framework of the LHC accelerator improvement program; (2) A new experimental area LNGS-B, of at least 50000 m3 at 10 km off-axis from the main Laboratory, eventually upgradable to larger sizes. A location is under consideration at about 1.2 km equivalent water depth; (3) A new LAr Imaging detector of at least 20 kt fiducial mass. Such an increase in the volume over the current ICARUS T600 needs to be carefully considered. It is concluded that a very large mass is best realised with a set of many identical, independent units, each of 5 kt, "cloning" the technology of the T600. Further phases may foresee extensions of MODULAr to meet future physics goals. The experiment might reasonably be operational in about 4/5 years, provided a new hall is excavated in the vicinity of the Gran Sasso Laboratory and adequate funding and participation are made available.Comment: Correspondig Author: C. Rubbia (E-mail: [email protected]), 33 pages, 11 figure

    Measurement of Through-Going Particle Momentum By Means Of Multiple Scattering With The ICARUS T600 TPC

    Get PDF
    The ICARUS collaboration has demonstrated, following the operation of a 600 ton (T600) detector at shallow depth, that the technique based on liquid Argon TPCs is now mature. The study of rare events, not contemplated in the Standard Model, can greatly benefit from the use of this kind of detectors. In particular, a deeper understanding of atmospheric neutrino properties will be obtained thanks to the unprecedented quality of the data ICARUS provides. However if we concentrate on the T600 performance, most of the őĹőľ\nu_\mu charged current sample will be partially contained, due to the reduced dimensions of the detector. In this article, we address the problem of how well we can determine the kinematics of events having partially contained tracks. The analysis of a large sample of atmospheric muons collected during the T600 test run demonstrate that, in case the recorded track is at least one meter long, the muon momentum can be reconstructed by an algorithm that measures the Multiple Coulomb Scattering along the particle's path. Moreover, we show that momentum resolution can be improved by a factor two using an algorithm based on the Kalman Filtering technique

    The ICARUS Experiment, A Second-Generation Proton Decay Experiment and Neutrino Observatory at the Gran Sasso Laboratory

    Get PDF
    The final phase of the ICARUS physics program requires a sensitive mass of liquid Argon of 5000 tons or more. The T600 detector stands today as the first living proof that such large detector can be built and that liquid Argon imaging technology can be implemented on such large scales. After the successful completion of a series of technical tests to be performed at the assembly hall in Pavia, the T600 detector will be ready to be transported into the LNGS tunnel. The operation of the T600 at the LNGS will allow us (1) to develop the local infrastructure needed to operate our large detector (2) to start the handling of the underground liquid argon technology (3) to study the local background (4) to start the data taking with an initial liquid argon mass that will reach in a 5-6 year program the multi-kton goal. The T600 is to be considered as the first milestone on the road towards a total sensitive mass of 5000 tons: it is the first piece of the detector to be complemented by further modules of appropriate size and dimensions, in order to reach in a most efficient and rapid way the final design mass. In this document, we describe the physics program that will be accomplished within the first phase of the program

    operation and performance of the icarus t600 cryogenic plant at gran sasso underground laboratory

    Get PDF
    ICARUS T600 liquid argon time projection chamber is the first large mass electronic detector of a new generation able to combine the imaging capabilities of the old bubble chambers with the excellent calorimetric energy measurement. After the three months demonstration run on surface in Pavia during 2001, the T600 cryogenic plant was significantly revised, in terms of reliability and safety, in view of its long-term operation in an underground environment. The T600 detector was activated in Hall B of the INFN Gran Sasso Laboratory during Spring 2010, where it was operated without interruption for about three years, taking data exposed to the CERN to Gran Sasso long baseline neutrino beam and cosmic rays. In this paper the T600 cryogenic plant is described in detail together with the commissioning procedures that lead to the successful operation of the detector shortly after the end of the filling with liquid Argon. Overall plant performance and stability during the long-term underground operation are discussed. Finally, the decommissioning procedures, carried out about six months after the end of the CNGS neutrino beam operation, are reported
    • ‚Ķ
    corecore