527 research outputs found

    The Gamma Ray Imaging Detector of the AGILE satellite: A novel application of silicon trackers for detection of astrophysics high-energy photons

    Get PDF
    Abstract AGILE is a project of the Italian Space Agency (ASI) Scientific Program dedicated to Gamma ray astrophysics. It is designed to be a very light and compact instrument, capable of photon detections and imaging in both the 30 MeV–50 GeV and 18–60 keV energy ranges, with a large field of view (FOV is ∼3 and ∼1 sr, respectively). The core of the instrument (launched on April 23, 2007 from the Indian Space Research Organization's launch facility) is represented by the Gamma Ray Imaging Detector (GRID), which is a silicon tracker developed by the Italian National Institute of Nuclear Physics (INFN), with a spatial resolution of ∼40 μ m. The GRID performances have been studied by means of a GEANT Montecarlo, and tested with a dedicated calibration campaign using the tagged gamma beam available at Beam Test Facility (BTF) of INFN Frascati Laboratory

    WARP: a WIMP double phase Argon detector

    Full text link
    The WARP programme for dark matter search with a double phase argon detector is presented. In such a detector both excitation and ionization produced by an impinging particle are evaluated by the contemporary measurement of primary scintillation and secondary (proportional) light signal, this latter being produced by extracting and accelerating ionization electrons in the gas phase. The proposed technique, verified on a 2.3 liters prototype, could be used to efficiently discriminate nuclear recoils, induced by WIMP's interactions, and measure their energy spectrum. An overview of the 2.3 liters results and of the proposed 100 liters detector is shown.Comment: Proceeding for IDM200

    AGILE Observations of the Gravitational Wave Event GW150914

    Get PDF
    We report the results of an extensive search in the AGILE data for a gamma-ray counterpart of the LIGO gravitational wave event GW150914. Currently in spinning mode, AGILE has the potential of covering with its gamma-ray instrument 80 % of the sky more than 100 times a day. It turns out that AGILE came within a minute from the event time of observing the accessible GW150914 localization region. Interestingly, the gamma-ray detector exposed about 65 % of this region during the 100 s time intervals centered at -100 s and +300 s from the event time. We determine a 2-sigma flux upper limit in the band 50 MeV - 10 GeV, UL=1.9×10−8 erg cm−2 s−1UL = 1.9 \times 10^{-8} \rm \, erg \, cm^{-2} \, s^{-1} obtained about 300 s after the event. The timing of this measurement is the fastest ever obtained for GW150914, and significantly constrains the electromagnetic emission of a possible high-energy counterpart. We also carried out a search for a gamma-ray precursor and delayed emission over timescales ranging from minutes to days: in particular, we obtained an optimal exposure during the interval -150 / -30 s. In all these observations, we do not detect a significant signal associated with GW150914. We do not reveal the weak transient source reported by Fermi-GBM 0.4 s after the event time. However, even though a gamma-ray counterpart of the GW150914 event was not detected, the prospects for future AGILE observations of gravitational wave sources are decidedly promising.Comment: 20 pages, 6 figures. Submitted to the Astrophysical Journal Letters on April 1, 201

    AGILE Observations of the LIGO-Virgo Gravitational-wave Events of the GWTC-1 Catalog

    Get PDF
    We present a comprehensive review of AGILE follow-up observations of the Gravitational Wave (GW) events and the unconfirmed marginal triggers reported in the first LIGO-Virgo (LV) Gravitational Wave Transient Catalog (GWTC-1). For seven GW events and 13 LV triggers, the associated 90% credible region was partially or fully accessible to the AGILE satellite at the T 0; for the remaining events, the localization region was not accessible to AGILE due to passages into the South Atlantic Anomaly, or complete Earth occultations (as in the case of GW170817). A systematic search for associated transients, performed on different timescales and on different time intervals about each event, led to the detection of no gamma-ray counterparts. We report AGILE MCAL upper limit fluences in the 400 keV-100 MeV energy range, evaluated in a time window of T 0 ± 50 s around each event, as well as AGILE GRID upper limit (UL) fluxes in the 30 MeV-50 GeV energy range, evaluated in a time frame of T 0 ± 950 s around each event. All ULs are estimated at different integration times and are evaluated within the portions of GW credible region accessible to AGILE at the different times under consideration. We also discuss the possibility of AGILE MCAL to trigger and detect a weak soft-spectrum burst such as GRB 170817A

    CaloCube: a novel calorimeter for high-energy cosmic rays in space

    Get PDF
    In order to extend the direct observation of high-energy cosmic rays up to the PeV region, highly performing calorimeters with large geometrical acceptance and high energy resolution are required. Within the constraint of the total mass of the apparatus, crucial for a space mission, the calorimeters must be optimized with respect to their geometrical acceptance, granularity and absorption depth. CaloCube is a homogeneous calorimeter with cubic geometry, to maximise the acceptance being sensitive to particles from every direction in space; granularity is obtained by relying on small cubic scintillating crystals as active elements. Different scintillating materials have been studied. The crystal sizes and spacing among them have been optimized with respect to the energy resolution. A prototype, based on CsI(Tl) cubic crystals, has been constructed and tested with particle beams. Some results of tests with different beams at CERN are presented.Comment: Seven pages, seven pictures. Proceedings of INSTR17 Novosibirs

    Precise 3D track reconstruction algorithm for the ICARUS T600 liquid argon time projection chamber detector

    Get PDF
    Liquid Argon Time Projection Chamber (LAr TPC) detectors offer charged particle imaging capability with remarkable spatial resolution. Precise event reconstruction procedures are critical in order to fully exploit the potential of this technology. In this paper we present a new, general approach of three-dimensional reconstruction for the LAr TPC with a practical application to track reconstruction. The efficiency of the method is evaluated on a sample of simulated tracks. We present also the application of the method to the analysis of real data tracks collected during the ICARUS T600 detector operation with the CNGS neutrino beam.Comment: Submitted to Advances in High Energy Physic

    Search for anomalies in the {\nu}e appearance from a {\nu}{\mu} beam

    Get PDF
    We report an updated result from the ICARUS experiment on the search for {\nu}{\mu} ->{\nu}e anomalies with the CNGS beam, produced at CERN with an average energy of 20 GeV and travelling 730 km to the Gran Sasso Laboratory. The present analysis is based on a total sample of 1995 events of CNGS neutrino interactions, which corresponds to an almost doubled sample with respect to the previously published result. Four clear {\nu}e events have been visually identified over the full sample, compared with an expectation of 6.4 +- 0.9 events from conventional sources. The result is compatible with the absence of additional anomalous contributions. At 90% and 99% confidence levels the limits to possible oscillated events are 3.7 and 8.3 respectively. The corresponding limit to oscillation probability becomes consequently 3.4 x 10-3 and 7.6 x 10-3 respectively. The present result confirms, with an improved sensitivity, the early result already published by the ICARUS collaboration
    • …
    corecore