36 research outputs found

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Le petit neutrino

    No full text

    The interaction of CK2alpha and CK2beta, the subunits of protein kinase CK2, requires CK2beta in a preformed conformation and is enthalpically driven

    No full text
    The protein kinase CK2 (former name: "casein kinase 2") predominantly occurs as a heterotetrameric holoenzyme composed of two catalytic chains (CK2alpha) and two noncatalytic subunits (CK2beta). The CK2beta subunits form a stable dimer to which the CK2alpha monomers are attached independently. In contrast to the cyclins in the case of the cyclin-dependent kinases CK2beta is no on-switch of CK2alpha; rather the formation of the CK2 holoenzyme is accompanied with an overall change of the enzyme's profile including a modulation of the substrate specificity, an increase of the thermostability, and an allocation of docking sites for membranes and other proteins. In this study we used C-terminal deletion variants of human CK2alpha and CK2beta that were enzymologically fully competent and in particular able to form a heterotetrameric holoenzyme. With differential scanning calorimetry (DSC) we confirmed the strong thermostabilization effect of CK2alpha on CK2beta with an upshift of the CK2alpha melting temperature of more than 9 degrees . Using isothermal titration calorimetry (ITC) we measured a dissociation constant of 12.6 nM. This high affinity between CK2alpha and CK2beta is mainly caused by enthalpic rather than entropic contributions. Finally, we determined a crystal structure of the CK2beta construct to 2.8 A resolution and revealed by structural comparisons with the CK2 holoenzyme structure that the CK2beta conformation is largely conserved upon association with CK2alpha, whereas the latter undergoes significant structural adaptations of its backbone

    Report of the Instrumentation Frontier Working Group for Snowmass 2021

    No full text
    Detector instrumentation is at the heart of scientific discoveries. Cutting edge technologies enable US particle physics to play a leading role worldwide. This report summarizes the current status of instrumentation for High Energy Physics (HEP), the challenges and needs of future experiments and indicates high priority research areas. The Snowmass Instrumentation Frontier studies detector technologies and Research and Development (R&D) needed for future experiments in collider physics, neutrino physics, rare and precision physics and at the cosmic frontier. It is divided into more or less diagonal areas with some overlap among a few of them. We lay out five high-level key messages that are geared towards ensuring the health and competitiveness of the US detector instrumentation community, and thus the entire particle physics landscape

    Low energy radioactivity BG model in Super-Kamiokande detector from SK-IV data

    No full text