110 research outputs found

    Experimental and numerical analysis of a CO2 dual-source heat pump with PVT evaporators for residential heating applications

    Get PDF
    Multi-source energy systems are a promising solution to lower the environmental impact of the heating and cooling sector and enhance the exploitation of renewable energy sources. In this context, dual-source solar-assisted heat pumps exploit solar energy and air as the low-temperature heat sources. However, the efficiency of solar-based systems is strictly related to weather conditions, location, and time. Therefore, there is a need for accurate models to be used in dynamic simulations of these systems and perform detailed performance analyses and study the involved energy flows. This paper presents an experimental and numerical investigation of a direct-expansion solar-assisted heat pump (DX-SAHP) operating with CO2 as the refrigerant. The heat pump prototype can work with an air-finned coil heat exchanger or photovoltaic-thermal (PVT) solar collectors as the evaporator. The solar-mode configuration allows the exploitation of the heat from solar radiation to evaporate the refrigerant and to improve the photovoltaic electricity production due to the cooling of the cells up to 8%. A numerical heat pump model, integrated with novel gas-cooler and PVT collectors models, has been developed and implemented as a TRNSYS type for dynamic simulations of the system. The model has been validated with continuous measurements during the heat pump operation in solar and air modes. The proposed model can be used for performing seasonal simulations of a heat pump operating with a transcritical CO2 cycle. Moreover, the outcomes of the analysis show how the configuration of a CO2 heat pump with a direct-expansion air-finned coil heat exchanger or PVT can be used to enhance the performance of the heat pump and increase the electrical efficiency of the photovoltaic cells

    The survey and reference assisted assembly of the Octopus vulgaris genome

    Get PDF
    The common octopus, Octopus vulgaris, is an active marine predator known for the richness and plasticity of its behavioral repertoire, and remarkable learning and memory capabilities. Octopus and other coleoid cephalopods, cuttlefish and squid, possess the largest nervous system among invertebrates, both for cell counts and body to brain size. O. vulgaris has been at the center of a long-tradition of research into diverse aspects of its biology. To leverage research in this iconic species, we generated 270\u2009Gb of genomic sequencing data, complementing those available for the only other sequenced congeneric octopus, Octopus bimaculoides. We show that both genomes are similar in size, but display different levels of heterozygosity and repeats. Our data give a first quantitative glimpse into the rate of coding and non-coding regions and support the view that hundreds of novel genes may have arisen independently despite the close phylogenetic distance. We furthermore describe a reference-guided assembly and an open genomic resource (CephRes-gdatabase), opening new avenues in the study of genomic novelties in cephalopods and their biology

    Charge identification of fragments with the emulsion spectrometer of the FOOT experiment

    Get PDF
    The FOOT (FragmentatiOn Of Target) experiment is an international project designed to carry out the fragmentation cross-sectional measurements relevant for charged particle therapy (CPT), a technique based on the use of charged particle beams for the treatment of deep-seated tumors. The FOOT detector consists of an electronic setup for the identification of Z ≥ 3 fragments and an emulsion spectrometer for Z ≤ 3 fragments. The first data taking was performed in 2019 at the GSI facility (Darmstadt, Germany). In this study, the charge identification of fragments induced by exposing an emulsion detector, embedding a C2 H4 target, to an oxygen ion beam of 200 MeV/n is discussed. The charge identification is based on the controlled fading of nuclear emulsions in order to extend their dynamic range in the ionization response

    Charge identification of fragments with the emulsion spectrometer of the FOOT experiment

    Get PDF
    The FOOT (FragmentatiOn Of Target) experi- ment is an international project designed to carry out the fragmentation cross-sectional measurements relevant for charged particle therapy (CPT), a technique based on the use of charged particle beams for the treatment of deep-seated tumors. The FOOT detector consists of an electronic setup for the identification of Z >= 3 fragments and an emulsion spectrometer for Z <= 3 fragments. The first data taking was performed in 2019 at the GSI facility(Darmstadt, Germany). In this study, the charge identifi-cation of fragments induced by exposing an emulsion detector, embedding a C2H4 target, to an oxygen ion beam of 200 MeV/n is discussed. The charge identifica-tion is based on the controlled fading of nuclear emulsions in order to extend their dynamic range in the ionization response

    Measuring the Impact of Nuclear Interaction in Particle Therapy and in Radio Protection in Space: the FOOT Experiment

    Get PDF
    In Charged Particle Therapy (PT) proton or 12C beams are used to treat deep-seated solid tumors exploiting the advantageous characteristics of charged particles energy deposition in matter. For such projectiles, the maximum of the dose is released at the end of the beam range, in the Bragg peak region, where the tumour is located. However, the nuclear interactions of the beam nuclei with the patient tissues can induce the fragmentation of projectiles and/or target nuclei and needs to be carefully taken into account when planning the treatment. In proton treatments, the target fragmentation produces low energy, short range fragments along all the beam path, that deposit a non-negligible dose especially in the first crossed tissues. On the other hand, in treatments performed using 12C, or other (4He or 16O) ions of interest, the main concern is related to the production of long range fragments that can release their dose in the healthy tissues beyond the Bragg peak. Understanding nuclear fragmentation processes is of interest also for radiation protection in human space flight applications, in view of deep space missions. In particular 4He and high-energy charged particles, mainly 12C, 16O, 28Si and 56Fe, provide the main source of absorbed dose in astronauts outside the atmosphere. The nuclear fragmentation properties of the materials used to build the spacecrafts need to be known with high accuracy in order to optimise the shielding against the space radiation. The study of the impact of these processes, which is of interest both for PT and space radioprotection applications, suffers at present from the limited experimental precision achieved on the relevant nuclear cross sections that compromise the reliability of the available computational models. The FOOT (FragmentatiOn Of Target) collaboration, composed of researchers from France, Germany, Italy and Japan, designed an experiment to study these nuclear processes and measure the corresponding fragmentation cross sections. In this work we discuss the physics motivations of FOOT, describing in detail the present detector design and the expected performances, coming from the optimization studies based on accurate FLUKA MC simulations and preliminary beam test results. The measurements planned will be also presented

    Elemental fragmentation cross sections for a O-16 beam of 400 MeV/u kinetic energy interacting with a graphite target using the FOOT Delta E-TOF detectors

    Get PDF
    The study of nuclear fragmentation plays a central role in many important applications: from the study of Particle Therapy (PT) up to radiation protection for space (RPS) missions and the design of shielding for nuclear reactors. The FragmentatiOn Of Target (FOOT) collaboration aims to study the nuclear reactions that describe the interactions with matter of different light ions (like H-1, He-4, C-12, O-16) of interest for such applications, performing double differential fragmentation cross section measurements in the energy range of interest for PT and RPS. In this manuscript, we present the analysis of the data collected in the interactions of an oxygen ion beam of 400 MeV/u with a graphite target using a partial FOOT setup, at the GSI Helmholtz Center for Heavy Ion Research facility in Darmstadt. During the data taking the magnets, the silicon trackers and the calorimeter foreseen in the final FOOT setup were not yet available, and hence precise measurements of the fragments kinetic energy, momentum and mass were not possible. However, using the FOOT scintillator detectors for the time of flight (TOF) and energy loss (Delta E) measurements together with a drift chamber, used as beam monitor, it was possible to measure the elemental fragmentation cross sections. The reduced detector set-up and the limited available statistics allowed anyway to obtain relevant results, providing statistically significant measurements of cross sections eagerly needed for PT and RPS applications. Whenever possible the obtained results have been compared with existing measurements helping in discriminating between conflicting results in the literature and demonstrating at the same time the proper functioning of the FOOT Delta E-TOF system. Finally, the obtained fragmentation cross sections are compared to the Monte Carlo predictions obtained with the FLUKA software

    Pushing the high count rate limits of scintillation detectors for challenging neutron-capture experiments

    Full text link
    One of the critical aspects for the accurate determination of neutron capture cross sections when combining time-of-flight and total energy detector techniques is the characterization and control of systematic uncertainties associated to the measuring devices. In this work we explore the most conspicuous effects associated to harsh count rate conditions: dead-time and pile-up effects. Both effects, when not properly treated, can lead to large systematic uncertainties and bias in the determination of neutron cross sections. In the majority of neutron capture measurements carried out at the CERN n\_TOF facility, the detectors of choice are the C6_{6}D6_{6} liquid-based either in form of large-volume cells or recently commissioned sTED detector array, consisting of much smaller-volume modules. To account for the aforementioned effects, we introduce a Monte Carlo model for these detectors mimicking harsh count rate conditions similar to those happening at the CERN n\_TOF 20~m fligth path vertical measuring station. The model parameters are extracted by comparison with the experimental data taken at the same facility during 2022 experimental campaign. We propose a novel methodology to consider both, dead-time and pile-up effects simultaneously for these fast detectors and check the applicability to experimental data from 197^{197}Au(nn,Îł\gamma), including the saturated 4.9~eV resonance which is an important component of normalization for neutron cross section measurements

    Advances and new ideas for neutron-capture astrophysics experiments at CERN n_TOF

    Get PDF
    This article presents a few selected developments and future ideas related to the measurement of (n,Îł) data of astrophysical interest at CERN n_TOF. The MC-aided analysis methodology for the use of low-efficiency radiation detectors in time-of-flight neutron-capture measurements is discussed, with particular emphasis on the systematic accuracy. Several recent instrumental advances are also presented, such as the development of total-energy detectors with Îł-ray imaging capability for background suppression, and the development of an array of small-volume organic scintillators aimed at exploiting the high instantaneous neutron-flux of EAR2. Finally, astrophysics prospects related to the intermediate i neutron-capture process of nucleosynthesis are discussed in the context of the new NEAR activation area

    Advances and new ideas for neutron-capture astrophysics experiments at CERN n_TOF

    Get PDF
    This article presents a few selected developments and future ideas related to the measurement of (n,Îł) data of astrophysical interest at CERN n_TOF. The MC-aided analysis methodology for the use of low-efficiency radiation detectors in time-of-flight neutron-capture measurements is discussed, with particular emphasis on the systematic accuracy. Several recent instrumental advances are also presented, such as the development of total-energy detectors with Îł-ray imaging capability for background suppression, and the development of an array of small-volume organic scintillators aimed at exploiting the high instantaneous neutron-flux of EAR2. Finally, astrophysics prospects related to the intermediate i neutron-capture process of nucleosynthesis are discussed in the context of the new NEAR activation area

    Host-Adaptation of Francisella tularensis Alters the Bacterium's Surface-Carbohydrates to Hinder Effectors of Innate and Adaptive Immunity

    Get PDF
    The gram-negative bacterium Francisella tularensis survives in arthropods, fresh water amoeba, and mammals with both intracellular and extracellular phases and could reasonably be expected to express distinct phenotypes in these environments. The presence of a capsule on this bacterium has been controversial with some groups finding such a structure while other groups report that no capsule could be identified. Previously we reported in vitro culture conditions for this bacterium which, in contrast to typical methods, yielded a bacterial phenotype that mimics that of the bacterium's mammalian, extracellular phase.SDS-PAGE and carbohydrate analysis of differentially-cultivated F. tularensis LVS revealed that bacteria displaying the host-adapted phenotype produce both longer polymers of LPS O-antigen (OAg) and additional HMW carbohydrates/glycoproteins that are reduced/absent in non-host-adapted bacteria. Analysis of wildtype and OAg-mutant bacteria indicated that the induced changes in surface carbohydrates involved both OAg and non-OAg species. To assess the impact of these HMW carbohydrates on the access of outer membrane constituents to antibody we used differentially-cultivated bacteria in vitro to immunoprecipitate antibodies directed against outer membrane moieties. We observed that the surface-carbohydrates induced during host-adaptation shield many outer membrane antigens from binding by antibody. Similar assays with normal mouse serum indicate that the induced HMW carbohydrates also impede complement deposition. Using an in vitro macrophage infection assay, we find that the bacterial HMW carbohydrate impedes TLR2-dependent, pro-inflammatory cytokine production by macrophages. Lastly we show that upon host-adaptation, the human-virulent strain, F. tularensis SchuS4 also induces capsule production with the effect of reducing macrophage-activation and accelerating tularemia pathogenesis in mice.F. tularensis undergoes host-adaptation which includes production of multiple capsular materials. These capsules impede recognition of bacterial outer membrane constituents by antibody, complement, and Toll-Like Receptor 2. These changes in the host-pathogen interface have profound implications for pathogenesis and vaccine development
    • …
    corecore