6,722 research outputs found

    Performance studies of scintillating ceramic samples exposed to ionizing radiation

    Full text link
    Scintillating ceramics are a promising, new development for various applications in science and industry. Their application in calorimetry for particle physics experiments is expected to involve an exposure to high levels of ionizing radiation. In this paper, changes in performance have been measured for scintillating ceramic samples of different composition after exposure to penetrating ionizing radiation up to a dose of 38 kGy.Comment: 6 pages, 8 figures, to be published in the 2012 IEEE Nuclear Science Symposium Conference Recor

    Three-dimensional charge transport mapping by two-photon absorption edge transient-current technique in synthetic single-crystalline diamond

    Full text link
    We demonstrate the application of two-photon absorption transient current technique to wide bandgap semiconductors. We utilize it to probe charge transport properties of single-crystal Chemical Vapor Deposition (scCVD) diamond. The charge carriers, inside the scCVD diamond sample, are excited by a femtosecond laser through simultaneous absorption of two photons. Due to the nature of two-photon absorption, the generation of charge carriers is confined in space (3-D) around the focal point of the laser. Such localized charge injection allows to probe the charge transport properties of the semiconductor bulk with a fine-grained 3-D resolution. Exploiting spatial confinement of the generated charge, the electrical field of the diamond bulk was mapped at different depths and compared to an X-ray diffraction topograph of the sample. Measurements utilizing this method provide a unique way of exploring spatial variations of charge transport properties in transparent wide-bandgap semiconductors.Comment: This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. The following article appeared in Applied Physics Letters and may be found at https://doi.org/10.1063/1.509085

    A visualization of the damage in Lead Tungstate calorimeter crystals after exposure to high-energy hadrons

    Full text link
    The anticipated performance of calorimeter crystals in the environment expected after the planned High-Luminosity upgrade of the Large Hadron Collider (HL-LHC) at CERN has to be well understood, before informed decisions can be made on the need for detector upgrades. Throughout the years of running at the HL-LHC, the detectors will be exposed to considerable fluences of fast hadrons, that have been shown to cause cumulative transparency losses in Lead Tungstate scintillating crystals. In this study, we present direct evidence of the main underlying damage mechanism. Results are shown from a test that yields a direct insight into the nature of the hadron-specific damage in Lead Tungstate calorimeter crystals exposed to 24 GeV/c protons.Comment: 8 pages, 6 figure

    Proof-of-principle of a new geometry for sampling calorimetry using inorganic scintillator plates

    Full text link
    A novel geometry for a sampling calorimeter employing inorganic scintillators as an active medium is presented. To overcome the mechanical challenges of construction, an innovative light collection geometry has been pioneered, that minimises the complexity of construction. First test results are presented, demonstrating a successful signal extraction. The geometry consists of a sampling calorimeter with passive absorber layers interleaved with layers of an active medium made of inorganic scintillating crystals. Wavelength-shifting (WLS) fibres run along the four long, chamfered edges of the stack, transporting the light to photodetectors at the rear. To maximise the amount of scintillation light reaching the WLS fibres, the scintillator chamfers are depolished. It is shown herein that this concept is working for cerium fluoride (CeF3_3) as a scintillator. Coupled to it, several different types of materials have been tested as WLS medium. In particular, materials that might be sufficiently resistant to the High-Luminosity Large Hadron Collider radiation environment, such as cerium-doped Lutetium-Yttrium Orthosilicate (LYSO) and cerium-doped quartz, are compared to conventional plastic WLS fibres. Finally, an outlook is presented on the possible optimisation of the different components, and the construction and commissioning of a full calorimeter cell prototype is presented.Comment: Submitted to Proceedings CALOR 2014, the 16th International Conference on Calorimetry in High-Energy Physics, Giessen (Germany) 6 - 11 April 2014. To be published in Journal of Physics: Conference Series (10 pages, 15 figures

    Research Proposal for an Experiment to Search for the Decay {\mu} -> eee

    Full text link
    We propose an experiment (Mu3e) to search for the lepton flavour violating decay mu+ -> e+e-e+. We aim for an ultimate sensitivity of one in 10^16 mu-decays, four orders of magnitude better than previous searches. This sensitivity is made possible by exploiting modern silicon pixel detectors providing high spatial resolution and hodoscopes using scintillating fibres and tiles providing precise timing information at high particle rates.Comment: Research proposal submitted to the Paul Scherrer Institute Research Committee for Particle Physics at the Ring Cyclotron, 104 page

    Operational experience, improvements, and performance of the CDF Run II silicon vertex detector

    Full text link
    The Collider Detector at Fermilab (CDF) pursues a broad physics program at Fermilab's Tevatron collider. Between Run II commissioning in early 2001 and the end of operations in September 2011, the Tevatron delivered 12 fb-1 of integrated luminosity of p-pbar collisions at sqrt(s)=1.96 TeV. Many physics analyses undertaken by CDF require heavy flavor tagging with large charged particle tracking acceptance. To realize these goals, in 2001 CDF installed eight layers of silicon microstrip detectors around its interaction region. These detectors were designed for 2--5 years of operation, radiation doses up to 2 Mrad (0.02 Gy), and were expected to be replaced in 2004. The sensors were not replaced, and the Tevatron run was extended for several years beyond its design, exposing the sensors and electronics to much higher radiation doses than anticipated. In this paper we describe the operational challenges encountered over the past 10 years of running the CDF silicon detectors, the preventive measures undertaken, and the improvements made along the way to ensure their optimal performance for collecting high quality physics data. In addition, we describe the quantities and methods used to monitor radiation damage in the sensors for optimal performance and summarize the detector performance quantities important to CDF's physics program, including vertex resolution, heavy flavor tagging, and silicon vertex trigger performance.Comment: Preprint accepted for publication in Nuclear Instruments and Methods A (07/31/2013

    Characterization of irradiated RD53A pixel modules with passive CMOS sensors

    Full text link
    We are investigating the feasibility of using CMOS foundries to fabricate silicon detectors, both for pixels and for large-area strip sensors. The availability of multi-layer routing will provide the freedom to optimize the sensor geometry and the performance, with biasing structures in poly-silicon layers and MIM-capacitors allowing for AC coupling. A prototyping production of strip test-structures and RD53A compatible pixel sensors was recently completed at LFoundry in a 150 \,nm CMOS process. This paper will focus on the characterization of irradiated and non-irradiated pixel modules, composed by a CMOS passive sensor interconnected to a RD53A chip. The sensors are designed with a pixel cell of 25×100 Όm225\times100\,\mu \mathrm{m}^2 in case of DC coupled devices and 50×50 Όm250\times50\,\mu \mathrm{m}^2 for the AC coupled ones. Their performance in terms of charge collection, position resolution, and hit efficiency was studied with measurements performed in the laboratory and with beam tests. The RD53A modules with LFoundry silicon sensors were irradiated to fluences up to 1.0×1016 neqcm21.0\times10^{16}\,\frac{\mathrm{n}_\mathrm{eq}}{\mathrm{cm}^2}

    Beam Condition Monitoring with Diamonds at CDF

    Get PDF
    This report talks Beam Condition Monitoring with Diamonds at CD

    The ATLAS SCT grounding and shielding concept and implementation

    Get PDF
    This paper presents a complete description of Virgo, the French-Italian gravitational wave detector. The detector, built at Cascina, near Pisa (Italy), is a very large Michelson interferometer, with 3 km-long arms. In this paper, following a presentation of the physics requirements, leading to the specifications for the construction of the detector, a detailed description of all its different elements is given. These include civil engineering infrastructures, a huge ultra-high vacuum (UHV) chamber (about 6000 cubic metres), all of the optical components, including high quality mirrors and their seismic isolating suspensions, all of the electronics required to control the interferometer and for signal detection. The expected performances of these different elements are given, leading to an overall sensitivity curve as a function of the incoming gravitational wave frequency. This description represents the detector as built and used in the first data-taking runs. Improvements in different parts have been and continue to be performed, leading to better sensitivities. These will be detailed in a forthcoming paper

    A Large Hadron Electron Collider at CERN

    Full text link
    This document provides a brief overview of the recently published report on the design of the Large Hadron Electron Collider (LHeC), which comprises its physics programme, accelerator physics, technology and main detector concepts. The LHeC exploits and develops challenging, though principally existing, accelerator and detector technologies. This summary is complemented by brief illustrations of some of the highlights of the physics programme, which relies on a vastly extended kinematic range, luminosity and unprecedented precision in deep inelastic scattering. Illustrations are provided regarding high precision QCD, new physics (Higgs, SUSY) and electron-ion physics. The LHeC is designed to run synchronously with the LHC in the twenties and to achieve an integrated luminosity of O(100) fb−1^{-1}. It will become the cleanest high resolution microscope of mankind and will substantially extend as well as complement the investigation of the physics of the TeV energy scale, which has been enabled by the LHC
    • 

    corecore