3,649 research outputs found

    Searching for Strongly Interacting Massive Particles (SIMPs)

    Get PDF
    We consider laboratory experiments that can detect stable, neutral strongly interacting massive particles (SIMPs). We explore the SIMP annihilation cross section from its minimum value (restricted by cosmological bounds) to the barn range, and vary the mass values from a GeV to a TeV. We calculate, as a function of the SIMP-nucleon cross section, the minimum nucleon number A for which there should be binding in a nucleus. We consider accelerator mass spectrometry with a gold (A=200) target, and compute the likely abundance of anomalous gold nuclei if stable neutral SIMPs exist. We also consider the prospects and problems of detecting such particles at the Tevatron. We estimate optimistically that such detection might be possible for SIMPs with SIMP-nucleon cross sections larger than 0.1 millibarn and masses between 25 and 50 GeV.Comment: RevTeX, 10 pages, 3 figures; Minor updates to match published versio

    Searches for New Quarks and Leptons Produced in Z-Boson Decay

    Get PDF
    We have searched for events with new-particle topologies in 390 hadronic Z decays with the Mark II detector at the SLAC Linear Collider. We place 95%-confidence-level lower limits of 40.7 GeV/c^2 for the top-quark mass, 42.0 GeV/c^2 for the mass of a fourth-generation charge - 1/3 quark, and 41.3 GeV/c^2 for the mass of an unstable Dirac neutral lepton

    Measurement of Z Decays into Lepton Pairs

    Get PDF
    We present measurements by the Mark II experiment of the ratios of the leptonic partial widths of the Z boson to the hadronic partial width. The results are Γ_(ee)/Γ_(had)=0.037_(-0.012^()+0.016),Γ_(µµ)/Γ_(had)=0.053-_(0.015)^(+0.020), and Γ_(ττ)/Γ_(had)=0.066_(-0.017)^(+0.021), in good agreement with the standard-model prediction of 0.048. From the average leptonic width result, Γ_(ll)/Γ_(had)=0.053_(-0.009)^(+0.010), we derive Γ_(had)=1.56_(-0.24)^(+0.28) GeV. We find for the vector coupling constants of the tau and muon v_τ^2=0.31±0.31_(-0.30)^(+0.43) and v_μ^2=0.05±0.30_(-0.23)^(+0.34)

    Negative and positive selection of antigen-specific cytotoxic T lymphocytes affected by the α3 domain of MHC I molecules

    Get PDF
    THE α1 and α2 domains of major histocompatibility complex (MHC) class I molecules function in the binding and presentation of foreign peptides to the T-cell antigen receptor and control both negative and positive selection of the T-cell repertoire. Although the α3 domain of class I is not involved in peptide binding, it does interact with the T-cell accessory molecule, CDS. CDS is important in the selection of T cells as anti-CDS antibody injected into perinatal mice interfers with this process. We previously used a hybrid class I molecule with the α1/α2 domains from L^d and the α3 domain from Q7^b and showed that this molecule binds an L^d-restricted peptide but does not interact with CD8-dependent cytotoxic T lymphocytes. Expression of this molecule in transgenic mice fails to negatively select a subpopulation of anti-L^d cytotoxic T lymphocytes. In addition, positive selection of virus-specific L^d-restricted cytotoxic T lymphocytes does not occur. We conclude that besides the α1/α2 domains of class I, the α3 domain plays an important part in both positive and negative selection of antigen-specific cells

    Test of the Running of αs\alpha_s in τ\tau Decays

    Full text link
    The τ\tau decay rate into hadrons of invariant mass smaller than s0≫ΛQCD\sqrt{s_0}\gg\Lambda_{\rm QCD} can be calculated in QCD assuming global quark--hadron duality. It is shown that this assumption holds for s0>0.7s_0>0.7~GeV2^2. From measurements of the hadronic mass distribution, the running coupling constant αs(s0)\alpha_s(s_0) is extracted in the range 0.7~GeV2<s0<mτ2^2<s_0<m_\tau^2. At s0=mτ2s_0=m_\tau^2, the result is αs(mτ2)=0.329±0.030\alpha_s(m_\tau^2)=0.329\pm 0.030. The running of αs\alpha_s is in good agreement with the QCD prediction.Comment: 9 pages, 3 figures appended; shortened version with new figures, to appear in Physical Review Letters (April 1996
    • …