387 research outputs found

    Spin Seebeck and Spin Nernst Effects of Magnons in Noncollinear Antiferromagnetic Insulators

    Full text link
    Our joint theoretical and computer experimental study of heat-to-spin conversion reveals that noncollinear antiferromagnetic insulators are promising materials for generating magnon spin currents upon application of a temperature gradient: they exhibit spin Seebeck and spin Nernst effects. Using Kubo theory and spin dynamics simulations, we explicitly evaluate these effects in a single kagome sheet of potassium iron jarosite, KFe3_3(OH)6_6(SO4_4)2_2, and predict a spin Seebeck conversion factor of 0.2μV/K0.2 \mu\mathrm{V}/\mathrm{K} at a temperature of 20K20 \mathrm{K}.Comment: 6 pages, 3 figure

    The calculation of the two-loop spin splitting functions Pij(1_{ij}^{(1})(x)

    Get PDF
    We present the calculation of the two-loop spin splitting functions P_{ij}^{(1)}(x)\; (i,j = q,g) contributing to the next-to-leading order corrected spin structure function g_1(x,Q^2). These splitting functions, which are presented in the \MSbs, are derived from the order \alpha_s^2 contribution to the anomalous dimensions \gamma_{ij}^{m} \; (i,j = q,g). The latter correspond to the local operators which appear in the operator product expansion of two electromagnetic currents. Some of the properties of the anomalous dimensions will be discussed. In particular we find that in order \alpha_s^2 the supersymmetric relation \gamma_{qq}^{m}+\gamma_{gq}^{m}-\gamma_{qg} ^{m}-\gamma_{gg}^{m}=0 is violated

    Bi2Te3Bi_2Te_3: Implications of the rhombohedral k-space texture on the evaluation of the in-plane/out-of-plane conductivity anisotropy

    Full text link
    Different computational scheme for calculating surface integrals in anisotropic Brillouin zones are compared. The example of the transport distribution function (plasma frequency) of the thermoelectric Material \BiTe near the band edges will be discussed. The layered structure of the material together with the rhombohedral symmetry causes a strong anisotropy of the transport distribution function for the directions in the basal (in-plane) and perpendicular to the basal plane (out-of-plane). It is shown that a thorough reciprocal space integration is necessary to reproduce the in-plane/out-of-plane anisotropy. A quantitative comparison can be made at the band edges, where the transport anisotropy is given in terms of the anisotropic mass tensor.Comment: 7 pages, 6 figs., subm. to J. Phys. Cond. Ma

    Transport properties of single atoms

    Full text link
    We present a systematic study of the ballistic electron conductance through sp and 3d transition metal atoms attached to copper and palladium crystalline electrodes. We employ the 'ab initio' screened Korringa-Kohn-Rostoker Green's function method to calculate the electronic structure of nanocontacts while the ballistic transmission and conductance eigenchannels were obtained by means of the Kubo approach as formulated by Baranger and Stone. We demonstrate that the conductance of the systems is mainly determined by the electronic properties of the atom bridging the macroscopic leads. We classify the conducting eigenchannels according to the atomic orbitals of the contact atom and the irreducible representations of the symmetry point group of the system that leads to the microscopic understanding of the conductance. We show that if impurity resonances in the density of states of the contact atom appear at the Fermi energy, additional channels of appropriate symmetry could open. On the other hand the transmission of the existing channels could be blocked by impurity scattering.Comment: RevTEX4, 9 pages, 9 figure

    Thermal Hall effect of magnons in collinear antiferromagnetic insulators: signatures of magnetic and topological phase transitions

    Get PDF
    We demonstrate theoretically that the thermal Hall effect of magnons in collinear antiferromagnetic insulators is an indicator of magnetic and topological phase transitions in the magnon spectrum. The transversal heat current of magnons caused by a thermal gradient is calculated for an antiferromagnet on a honeycomb lattice. An applied magnetic field drives the system from the antiferromagnetic phase via a spin-flop phase into the field-polarized phase. In addition to these magnetic phase transitions, we find topological phase transitions within the spin-flop phase. Both types of transitions manifest themselves in prominent and distinguishing features in the thermal conductivity, which changes by several orders of magnitude. The variation of temperature provides a tool to discern experimentally the two types of phase transitions. We include numerical results for the van der Waals magnet MnPS3

    Origin of the magnetic spin Hall effect: Spin current vorticity in the Fermi sea

    Get PDF
    The interplay of spin-orbit coupling (SOC) and magnetism gives rise to a plethora of charge-to-spin conversion phenomena that harbor great potential for spintronics applications. In addition to the spin Hall effect, magnets may exhibit a magnetic spin Hall effect (MSHE), as was recently discovered [M. Kimata et al., Nature (London) 565, 627 (2019)]. To date, the MSHE is still awaiting its intuitive explanation. Here, we relate the MSHE to the vorticity of spin currents in the Fermi sea, which explains pictorially the origin of the MSHE. For all magnetic Laue groups that allow for nonzero spin current vorticities the related tensor elements of the MSH conductivity are given. Minimal requirements for the occurrence of a MSHE are compatibility with either a magnetization or a magnetic toroidal quadrupole. This finding implies in particular that the MSHE is expected in all ferromagnets with sufficiently large SOC. To substantiate our symmetry analysis, we present various models, in particular a two-dimensional magnetized Rashba electron gas, that corroborate an interpretation by means of spin current vortices. Considering thermally induced spin transport and the magnetic spin Nernst effect in magnetic insulators, which are brought about by magnons, our findings for electron transport can be carried over to the realm of spin caloritronics, heat-to-spin conversion, and energy harvesting

    Resistivity due to low-symmetrical defects in metals

    Full text link
    The impurity resistivity, also known as the residual resistivity, is calculated ab initio using multiple-scattering theory. The mean-free path is calculated by solving the Boltzmann equation iteratively. The resistivity due to low-symmetrical defects, such as an impurity-vacancy pair, is calculated for the FCC host metals Al and Ag and the BCC transition metal V. Commonly, 1/f noise is attributed to the motion of such defects in a diffusion process.Comment: 24 pages in REVTEX-preprint format, 10 Postscript figures. Phys. Rev. B, vol. 57 (1998), accepted for publicatio

    Nonperturbative Description of Deep Inelastic Structure Functions in Light-Front QCD

    Get PDF
    We explore the deep inelastic structure functions of hadrons nonperturbatively in an inverse power expansion of the light-front energy of the probe in the framework of light-front QCD. We arrive at the general expressions for various structure functions as the Fourier transform of matrix elements of different components of bilocal vector and axial vector currents on the light-front in a straightforward manner. The complexities of the structure functions are mainly carried by the multi-parton wave functions of the hadrons, while, the bilocal currents have a dynamically dependent yet simple structure on the light-front in this description. We also present a novel analysis of the power corrections based on light-front power counting which resolves some ambiguities of the conventional twist analysis in deep inelastic processes. Further, the factorization theorem and the scale evolution of the structure functions are presented in this formalism by using old-fashioned light-front time-ordered perturbation theory with multi-parton wave functions. Nonperturbative QCD dynamics underlying the structure functions can be explored in the same framework. Once the nonperturbative multi-parton wave functions are known from low-energy light-front QCD, a complete description of deep inelastic structure functions can be realized.Comment: Revtex, 30 pages and no figur

    Strong influence of the complex bandstructure on the tunneling electroresistance: A combined model and ab-initio study

    Full text link
    The tunneling electroresistance (TER) for ferroelectric tunnel junctions (FTJs) with BaTiO_{3} (BTO) and PbTiO}_{3} (PTO) barriers is calculated by combining the microscopic electronic structure of the barrier material with a macroscopic model for the electrostatic potential which is caused by the ferroelectric polarization. The TER ratio is investigated in dependence on the intrinsic polarization, the chemical potential, and the screening properties of the electrodes. A change of sign in the TER ratio is obtained for both barrier materials in dependence on the chemical potential. The inverse imaginary Fermi velocity describes the microscopic origin of this effect; it qualitatively reflects the variation and the sign reversal of the TER. The quantity of the imaginary Fermi velocity allows to obtain detailed information on the transport properties of FTJs by analyzing the complex bandstructure of the barrier material.Comment: quality of figures reduce
    corecore