53,227 research outputs found

    Cosmology with a Nonlinear Born-Infeld type Scalar Field

    Full text link
    Recent many physicists suggest that the dark energy in the universe might result from the Born-Infeld(B-I) type scalar field of string theory. The universe of B-I type scalar field with potential can undergo a phase of accelerating expansion. The corresponding equation of state parameter lies in the range of 1<ω<1/3\displaystyle -1<\omega<-{1/3}. The equation of state parameter of B-I type scalar field without potential lies in the range of 0ω10\leq\omega\leq1. We find that weak energy condition and strong energy condition are violated for phantom B-I type scalar field. The equation of state parameter lies in the range of ω<1\omega<-1.Comment: 10 pages without figure

    Scalable Text and Link Analysis with Mixed-Topic Link Models

    Full text link
    Many data sets contain rich information about objects, as well as pairwise relations between them. For instance, in networks of websites, scientific papers, and other documents, each node has content consisting of a collection of words, as well as hyperlinks or citations to other nodes. In order to perform inference on such data sets, and make predictions and recommendations, it is useful to have models that are able to capture the processes which generate the text at each node and the links between them. In this paper, we combine classic ideas in topic modeling with a variant of the mixed-membership block model recently developed in the statistical physics community. The resulting model has the advantage that its parameters, including the mixture of topics of each document and the resulting overlapping communities, can be inferred with a simple and scalable expectation-maximization algorithm. We test our model on three data sets, performing unsupervised topic classification and link prediction. For both tasks, our model outperforms several existing state-of-the-art methods, achieving higher accuracy with significantly less computation, analyzing a data set with 1.3 million words and 44 thousand links in a few minutes.Comment: 11 pages, 4 figure

    Quantum degenerate dipolar Fermi gas

    Full text link
    The interplay between crystallinity and superfluidity is of great fundamental and technological interest in condensed matter settings. In particular, electronic quantum liquid crystallinity arises in the non-Fermi liquid, pseudogap regime neighboring a cuprate's unconventional superconducting phase. While the techniques of ultracold atomic physics and quantum optics have enabled explorations of the strongly correlated, many-body physics inherent in, e.g., the Hubbard model, lacking has been the ability to create a quantum degenerate Fermi gas with interparticle interactions---such as the strong dipole-dipole interaction---capable of inducing analogs to electronic quantum liquid crystals. We report the first quantum degenerate dipolar Fermi gas, the realization of which opens a new frontier for exploring strongly correlated physics and, in particular, the quantum melting of smectics in the pristine environment provided by the ultracold atomic physics setting. A quantum degenerate Fermi gas of the most magnetic atom 161Dy is produced by laser cooling to 10 uK before sympathetically cooling with ultracold, bosonic 162Dy. The temperature of the spin-polarized 161Dy is a factor T/TF=0.2 below the Fermi temperature TF=300 nK. The co-trapped 162Dy concomitantly cools to approximately Tc for Bose-Einstein condensation, thus realizing a novel, nearly quantum degenerate dipolar Bose-Fermi gas mixture.Comment: 6 pages, 3 figure

    Mixed language high-performance computing for plasma simulations

    Get PDF
    Java is receiving increasing attention as the most popular platform for distributed computing. However, programmers are still reluctant to embrace Java as a tool for writing scientific and engineering applications due to its still noticeable performance drawbacks compared with other programming languages such as Fortran or C. In this paper, we present a hybrid Java/Fortran implementation of a parallel particle-in-cell (PIC) algorithm for plasma simulations. In our approach, the time-consuming components of this application are designed and implemented as Fortran subroutines, while less calculation-intensive components usually involved in building the user interface are written in Java. The two types of software modules have been glued together using the Java native interface (JNI). Our mixed-language PIC code was tested and its performance compared with pure Java and Fortran versions of the same algorithm on a Sun E6500 SMP system and a Linux cluster of Pentium III machines

    G359.95-0.04: Pulsar Candidate Near Sgr A*

    Get PDF
    We report the discovery of a prominent nonthermal X-ray feature located near the Galactic center that we identify as an energetic pulsar wind nebula. This feature, G359.95-0.04, lies 1 lyr north of Sgr A* (in projection), is comet-like in shape, and has a power law spectrum that steepens with increasing distance from the putative pulsar. The distinct spectral and spatial X-ray characteristics of the feature are similar to those belonging the rare class of ram-pressure confined pulsar wind nebulae. The luminosity of the nebula at the distance of \sgra, consistent with the inferred X-ray absorptions, is 1 10^{34} ergs s^{-1} in the 2--10 keV energy band. The cometary tail extends back to a region centered at the massive stellar complex IRS 13 and surrounded by enhanced diffuse X-ray emission, which may represent an associated supernova remnant. Furthermore, the inverse Compton scattering of the strong ambient radiation by the nebula consistently explains the observed TeV emission from the Galactic center. We also briefly discuss plausible connections of G359.95-0.04 to other high-energy sources in the region, such as the young stellar complex IRS 13 and SNR Sgr A East.Comment: 11 pages, accepted for publication in MNRAS, higher resolution version at http://www.astro.umass.edu/~wqd/papers/xcomet.pd