51 research outputs found

    Magnetic field driven 2D-3D crossover in the S=12 frustrated chain magnet LiCuVO4

    Get PDF
    We report on a heat-capacity study of high-quality single-crystal samples of LiCuVO4 ‚ÄĒ a frustrated spin S = 1/2 chain system‚ÄĒin a magnetic field amounting to 3/4 of the saturation field. A detailed examination of magnetic phase transitions observed in this field range shows that although the low-field helical state clearly has three-dimensional properties, the field-induced spin-modulated phase turns out to be quasi-two-dimensional. The model proposed in this paper allows one to qualitatively understand this crossover, thus eliminating the presently existing contradictions in the interpretations of NMR and neutron-scattering measurements

    Aligning the CMS Muon Endcap Detector with a System of Optical Sensors

    Get PDF
    The positions and orientations of one sixth of 468 large cathode strip chambers in the endcaps of the CMS muon detector are directly monitored by several hundred sensors including 2-D optical sensors with linear CCDs illuminated by cross-hair lasers. Position measurements obtained by photogrammetry and survey under field-off conditions show that chambers in the +Z endcap have been placed on the yoke disks with an average accuracy of ‚Čą1\approx 1 mm in all 3 dimensions. We reconstruct absolute ZCMS_{CMS} positions and orientations of chambers at B=0T and B=4T using data from the optical alignment system. The measured position resolution and sensitivity to relative motion is about 60 őľm\mu m. The precision for measuring chamber positions taking into account mechanical tolerances is \mbox{‚Čą270őľm\approx 270 \mu m}. Comparing reconstruction of optical alignment data and photogrammetry measurements at B=0T indicates an accuracy of ‚Čą\approx 680 őľm\mu m currently achieved with the hardware alignment system. Optical position measurements at B=4T show significant chamber displacements of up to 13 mm due to yoke disk deformation

    Design and Performance of the Alignment System for the CMS Muon Endcaps

    Get PDF
    The alignment system for the CMS Muon Endcap detector employs several hundred sensors such as optical 1-D CCD sensors illuminated by lasers and analog distance- and tilt-sensors to monitor the positions of one sixth of 468 large Cathode Strip Chambers. The chambers mounted on the endcap yoke disks undergo substantial deformation on the order of centimeters when the 4T field is switched on and off. The Muon Endcap alignment system is required to monitor chamber positions with \mbox{75-200 őľ\mum} accuracy in the RŌē\phi plane, ‚Čą\approx400 őľ\mum in the radial direction, and ‚Čą\approx1 mm in the z-direction along the beam axis. The complete alignment hardware for one of the two endcaps has been installed at CERN. A major system test was performed when the 4T solenoid magnet was ramped up to full field for the first time in August 2006. We present the overall system design and first results on disk deformations, which indicate that the measurements agree with expectations

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Search for dark matter produced in association with bottom or top quarks in ‚ąös = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb‚ąí1 of proton‚Äďproton collision data recorded by the ATLAS experiment at ‚ąös = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Measurement of the W boson polarisation in ttňČt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS