117 research outputs found

    2011 Report of NSF Workshop Series on Scientific Software Security Innovation Institute

    Get PDF
    Over the period of 2010-2011, a series of two workshops were held in response to NSF Dear Colleague Letter NSF 10-050 calling for exploratory workshops to consider requirements for Scientific Software Innovation Institutes (S2I2s). The specific topic of the workshop series was the potential benefits of a security-focused software institute that would serve the entire NSF research and development community. The first workshop was held on August 6th, 2010 in Arlington, VA and represented an initial exploration of the topic. The second workshop was held on October 26th, 2011 in Chicago, IL and its goals were to 1) Extend our understanding of relevant needs of MREFC and large NSF Projects, 2) refine outcome from first workshop with broader community input, and 3) vet concepts for a trusted cyberinfrastructure institute. Towards those goals, the participants other 2011workshop included greater representation from MREFC and large NSF projects, and, for the most part, did not overlap with the participants from the 2010 workshop. A highlight of the second workshop was, at the invitation of the organizers, a presentation by Scott Koranda of the LIGO project on the history of LIGO’s identity management activities and how those could have benefited from a security institute. A key analysis he presented is that, by his estimation, LIGO could have saved 2 senior FTE-years of effort by following suitable expert guidance had it existed. The overarching finding from the workshops is that security is a critical crosscutting issue for the NSF software infrastructure and recommended a security focused activity to address this issue broadly, for example a security software institute (S2I2) under the SI2 program. Additionally, the 2010 workshop participants agreed to 15 key additional findings, which the 2011 workshop confirmed, with some refinement as discussed in this report.NSF Grant # 1043843Ope

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    The Sloan Digital Sky Survey: Technical Summary

    Get PDF
    The Sloan Digital Sky Survey (SDSS) will provide the data to support detailed investigations of the distribution of luminous and non- luminous matter in the Universe: a photometrically and astrometrically calibrated digital imaging survey of pi steradians above about Galactic latitude 30 degrees in five broad optical bands to a depth of g' about 23 magnitudes, and a spectroscopic survey of the approximately one million brightest galaxies and 10^5 brightest quasars found in the photometric object catalog produced by the imaging survey. This paper summarizes the observational parameters and data products of the SDSS, and serves as an introduction to extensive technical on-line documentation.Comment: 9 pages, 7 figures, AAS Latex. To appear in AJ, Sept 200

    stairs and fire

    Get PDF

    Discutindo a educação ambiental no cotidiano escolar: desenvolvimento de projetos na escola formação inicial e continuada de professores