1,645 research outputs found

    Lepton Flavour Violating top decays at the LHC

    Get PDF
    We consider lepton flavour violating decays of the top quark, mediated by four-fermion operators. We compile constraints on a complete set of SU(3)*U(1)-invariant operators, arising from their loop contributions to rare decays and from HERA's single top search. The bounds on e-mu flavour change are more restrictive than l-tau; nonetheless the top could decay to a jet +eμˉ+ e \bar{\mu} with a branching ratio of order 10−310^{-3}. We estimate that the currently available LHC data (20 inverse-fb at 8 TeV) could be sensitive to BR(t→eμˉBR(t \to e \bar{\mu}+ jet) ∼6×10−5 \sim 6\times 10^{-5}, and extrapolate that 100 inverse-fb at 13 TeV could reach a sensitivity of ∼1×10−5 \sim 1 \times 10^{-5}.Comment: 10 pages + Appendice

    Joint population and cosmological properties inference with gravitational waves standard sirens and galaxy surveys

    Get PDF
    Gravitational wave (GW) sources at cosmological distances can be used to probe the expansion rate of the Universe. GWs directly provide a distance estimation of the source but no direct information on its redshift. The optimal scenario to obtain a redshift is through the direct identification of an electromagnetic (EM) counterpart and its host galaxy. With almost 100 GW sources detected without EM counterparts (dark sirens), it is becoming crucial to have statistical techniques able to perform cosmological studies in the absence of EM emission. Currently, only two techniques for dark sirens are used on GW observations; the spectral siren method, which is based on the source-frame mass distribution to estimate conjointly cosmology and the source’s merger rate, and the galaxy survey method, which uses galaxy surveys to assign a probabilistic redshift to the source while fitting cosmology. It has been recognized, however, that these two methods are two sides of the same coin. In this paper, we present a novel approach to unify these two methods. We apply this approach to several observed GW events using the glade+ galaxy catalog discussing limiting cases. We provide estimates of the Hubble constant, modified gravity propagation effects, and population properties for binary black holes. We also estimate the binary black hole merger rate per galaxy to be 10−6–10−5  yr−1 depending on the galaxy catalog hypotheses

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis

    Differential cross section measurements for the production of a W boson in association with jets in proton–proton collisions at √s = 7 TeV