50,828 research outputs found

    How hole defects modify vortex dynamics in ferromagnetic nanodisks

    Full text link
    Defects introduced in ferromagnetic nanodisks may deeply affect the structure and dynamics of stable vortex-like magnetization. Here, analytical techniques are used for studying, among other dynamical aspects, how a small cylindrical cavity modify the oscillatory modes of the vortex. For instance, we have realized that if the vortex is nucleated out from the hole its gyrotropic frequencies are shifted below. Modifications become even more pronounced when the vortex core is partially or completely captured by the hole. In these cases, the gyrovector can be partially or completely suppressed, so that the associated frequencies increase considerably, say, from some times to several powers. Possible relevance of our results for understanding other aspects of vortex dynamics in the presence of cavities and/or structural defects are also discussed.Comment: 9 pages, 4 page

    A model for structural defects in nanomagnets

    Full text link
    A model for describing structural pointlike defects in nanoscaled ferromagnetic materials is presented. Its details are explicitly developed whenever interacting with a vortex-like state comprised in a thin nanodisk. Among others, our model yields results for the vortex equilibrium position under the influence of several defects along with an external magnetic field in good qualitative agreement with experiments. We also discuss how such defects may affect the vortex motion, like its gyrotropic oscillation and dynamical polarization reversal.Comment: 8 pages, resubmitted to Journal of Applied Physic

    Magnetization reversals in a disk-shaped small magnet with an interface

    Full text link
    We consider a nanodisk possessing two coupled materials with different ferromagnetic exchange constant. The common border line of the two media passes at the disk center dividing the system exactly in two similar half-disks. The vortex core motion crossing the interface is investigated with a simple description based on a two-dimensional model which mimics a very thin real material with such a line defect. The main result of this study is that, depending on the magnetic coupling which connects the media, the vortex core can be dramatically and repeatedly flipped from up to down and vice versa by the interface. This phenomenon produces burst-like emission of spin waves each time the switching process takes place.Comment: 11 pages, 10 figure

    Gribov ambiguities at the Landau -- maximal Abelian interpolating gauge

    Get PDF
    In a previous work, we presented a new method to account for the Gribov ambiguities in non-Abelian gauge theories. The method consists on the introduction of an extra constraint which directly eliminates the infinitesimal Gribov copies without the usual geometric approach. Such strategy allows to treat gauges with non-hermitian Faddeev-Popov operator. In this work, we apply this method to a gauge which interpolates among the Landau and maximal Abelian gauges. The result is a local and power counting renormalizable action, free of infinitesimal Gribov copies. Moreover, the interpolating tree-level gluon propagator is derived.Comment: Several changes: figures removed, typos corrected and discussions included. 24 pages, to appear in EPJ

    On the elimination of infinitesimal Gribov ambiguities in non-Abelian gauge theories

    Full text link
    An alternative method to account for the Gribov ambiguities in gauge theories is presented. It is shown that, to eliminate Gribov ambiguities, at infinitesimal level, it is required to break the BRST symmetry in a soft manner. This can be done by introducing a suitable extra constraint that eliminates the infinitesimal Gribov copies. It is shown that the present approach is consistent with the well established known cases in the literature, i.e., the Landau and maximal Abelian gauges. The method is valid for gauges depending exclusively on the gauge field and is restricted to classical level. However, occasionally, we deal with quantum aspects of the technique, which are used to improve the results.Comment: 29 pp. No figures. Discussions added. Final version to appear in EPJ
    • …