2 research outputs found

    PLGA/TiO2 nanocomposite scaffolds for biomedical applications: Fabrication, photocatalytic, and antibacterial properties

    Get PDF
    Introduction: Porous 3D scaffolds synthesized using biocompatible and biodegradable materials could provide suitable microenvironment and mechanical support for optimal cell growth and function. The effect of the scaffold porosity on the mechanical properties, as well as the TiO2 nanoparticles addition on the bioactivity, antimicrobial, photocatalytic, and cytotoxicity properties of scaffolds were investigated. Methods: In the present study, porous scaffolds consisting poly (lactide-co-glycolide) (PLGA) containing TiO2 nanoparticles were fabricated via air-liquid foaming technique, which is a novel method and has more advantages due to not using additives for nucleation compared to former ways. Results: Adjustment of the foaming process parameters was demonstrated to allow for textural control of the resulting scaffolds and their pore size tuning in the range of 200-600 μm. Mechanical properties of the scaffolds, in particular, their compressive strength, revealed an inverse relationship with the pore size, and varied in the range of 0.97-0.75 MPa. The scaffold with the pore size 270 μm, compressive strength 0.97 MPa, and porosity level 90, was chosen as the optimum case for the bone tissue engineering (BTE) application. Furthermore, 99 antibacterial effect of the PLGA/10 wt. TiO2 nanocomposite scaffolds against the strain was achieved using Escherichia coli. Besides, no negative effect of the new method was observed on the bioactivity behavior and apatite forming ability of scaffolds in the simulated body fluid (SBF). This nanocomposite also displayed a good cytocompatibility when assayed with MG 63 cells. Lastly, the nanocomposite scaffolds revealed the capability to degrade methylene blue (MB) dye by nearly 90 under the UV irradiation for 3 hours. Conclusion: Based on the results, nanocomposite new scaffolds are proposed as a promising candidate for the BTE applications as a replacement for the previous ones. © 2020 Tabriz University of Medical Sciences. All rights reserved

    A novel pathway to produce biodegradable and bioactive PLGA/TiO2 nanocomposite scaffolds for tissue engineering: Air�liquid foaming

    No full text
    Poly (lactate-co-glycolate) (PLGA) is a typical biocompatible and biodegradable synthetic polymer. The addition of TiO2 nanoparticles has shown to improve compressive modulus of PLGA scaffolds and reduced fast degradation. A novel method has been applied to fabricate PLGA/TiO2 scaffolds without using any inorganic solvent, with aim of improving the biocompatibility, macroscale morphology, and well inter-connected pores efficacy: Air�Liquid Foaming. Field Emission Scanning Electron Microscopy (FESEM) revealed an increase in interconnected porosity of up to 98. As well the compressive testing showed enhancement in modulus. Bioactivity and in vitro degradation were studied with immersion of scaffolds in Simulated Body Fluid (SBF) and incubation in Phosphate Buffered Saline (PBS), respectively. Formation of apatite layer corroborated the bioactivity after soaking in SBF. Degradation rate of scaffolds was increased with excessive addition of TiO2 contents withal. The in vitro cultured human-like MG63 ostoblast cells showed attachment, proliferation, and nontoxcitiy in contact, using MTT assay 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-Diphenyltetrazolium Bromide. According to the results, the novel method utilized in this study generated porous viable tissue without using any inorganic solvent or porogen can be a promising candidate in further treatment of orthopedic patients effectively. © 2020 Wiley Periodicals, Inc
    corecore