643 research outputs found

### Protogalactic Extension of the Parker Bound

We extend the Parker bound on the galactic flux $\cal F$ of magnetic
monopoles. By requiring that a small initial seed field must survive the
collapse of the protogalaxy, before any regenerative dynamo effects become
significant, we develop a stronger bound. The survival and continued growth of
an initial galactic seed field $\leq 10^{-9}$G demand that ${\cal F} \leq 5
\times 10^{-21} (m/10^{17} {GeV}) {cm}^{-2} {sec}^{-1} {sr}^{-1}$. For a given
monopole mass, this bound is four and a half orders of magnitude more stringent
than the previous `extended Parker bound', but is more speculative as it
depends on assumptions about the behavior of magnetic fields during
protogalactic collapse. For monopoles which do not overclose the Universe
($\Omega_m <1$), the maximum flux allowed is now $8 \times 10^{-19}$ cm^{-2}
s^{-1} sr^{-1}, a factor of 150 lower than the maximum flux allowed by the
extended Parker bound.Comment: 9 pages, 1 eps figur

### Epigenetics : a catalyst of plant immunity against pathogens

The plant immune system protects against pests and diseases. The recognition of stress-related molecular patterns triggers localised immune responses, which are often followed by longer-lasting systemic priming and/or up-regulation of defences. In some cases, this induced resistance (IR) can be transmitted to following generations. Such transgenerational IR is gradually reversed in the absence of stress at a rate that is proportional to the severity of disease experienced in previous generations. This review outlines the mechanisms by which epigenetic responses to pathogen infection shape the plant immune system across expanding time scales. We review the cis- and trans-acting mechanisms by which stress-inducible epigenetic changes at transposable elements (TEs) regulate genome-wide defence gene expression and draw particular attention to one regulatory model that is supported by recent evidence about the function of AGO1 and H2A.Z in transcriptional control of defence genes. Additionally, we explore how stress-induced mobilisation of epigenetically controlled TEs acts as a catalyst of Darwinian evolution by generating (epi)genetic diversity at environmentally responsive genes. This raises questions about the long-term evolutionary consequences of stress-induced diversification of the plant immune system in relation to the long-held dichotomy between Darwinian and Lamarckian evolution

### Coupled oscillators as models of phantom and scalar field cosmologies

We study a toy model for phantom cosmology recently introduced in the
literature and consisting of two oscillators, one of which carries negative
kinetic energy. The results are compared with the exact phase space picture
obtained for similar dynamical systems describing, respectively, a massive
canonical scalar field conformally coupled to the spacetime curvature, and a
conformally coupled massive phantom. Finally, the dynamical system describing
exactly a minimally coupled phantom is studied and compared with the toy model.Comment: 18 pages, LaTeX, to appear in Physical Review

### Comparing non-safety with safety device sharps injury incidence data from two different occupational surveillance systems

The United States Occupational Safety and Health Administration (OSHA) Bloodborne Pathogens Standard as amended by the Needlestick Safety and Prevention Act requiring the use of safety-engineered medical devices to prevent needlesticks and sharps injuries has been in place since 2001. Injury changes over time include differences between those from non-safety compared with safety-engineered medical devices. This research compares two US occupational incident surveillance systems to determine whether these data can be generalized to other facilities and other countries either with legislation in place or considering developing national policies for the prevention of sharps injuries among healthcare personnel

### Renormalization-Group Improved Effective Potential for Interacting Theories with Several Mass Scales in Curved Spacetime

The renormalization group (RG) is used in order to obtain the RG improved
effective potential in curved spacetime. This potential is explicitly
calculated for the Yukawa model and for scalar electrodynamics, i.e. theories
with several (namely, more than one) mass scales, in a space of constant
curvature. Using the $\lambda \varphi^4$-theory on a general curved spacetime
as an example, we show how it is possible to find the RG improved effective
Lagrangian in curved spacetime. As specific applications, we discuss the
possibility of curvature induced phase transitions in the Yukawa model and the
effective equations (back-reaction problem) for the $\lambda \varphi^4$-theory
on a De Sitter background.Comment: 18 pages, LaTeX file, UB-ECM-PF 93/2

### SN1A data and the CMB of Modified Curvature at short and long distances

The SN1a data, although inconclusive, when combined with other observations
makes a strong case that our universe is presently dominated by dark energy. We
investigate the possibility that large distance modifications of the curvature
of the universe would perhaps offer an alternative explanation of the
observation. Our calculations indicate that a universe made up of no dark
energy but instead, with a modified curvature at large scales, is not
scale-invariant, therefore quite likely it is ruled out by the CMB
observations. The sensitivity of the CMB spectrum is checked for the whole
range of mode modifications of large or short distance physics. The spectrum is
robust against modifications of short-distance physics and the UV cutoff when:
the initial state is the adiabatic vacuum, and the inflationary background
space is de Sitter.Comment: 13 pages, 2 eps figures, typos corrected, references added; to appear
in Phys. Rev.

### Particle creation, classicality and related issues in quantum field theory: II. Examples from field theory

We adopt the general formalism, which was developed in Paper I
(arXiv:0708.1233) to analyze the evolution of a quantized time-dependent
oscillator, to address several questions in the context of quantum field theory
in time dependent external backgrounds. In particular, we study the question of
emergence of classicality in terms of the phase space evolution and its
relation to particle production, and clarify some conceptual issues. We
consider a quantized scalar field evolving in a constant electric field and in
FRW spacetimes which illustrate the two extreme cases of late time adiabatic
and highly non-adiabatic evolution. Using the time-dependent generalizations of
various quantities like particle number density, effective Lagrangian etc.
introduced in Paper I, we contrast the evolution in these two limits bringing
out key differences between the Schwinger effect and evolution in the de Sitter
background. Further, our examples suggest that the notion of classicality is
multifaceted and any one single criterion may not have universal applicability.
For example, the peaking of the phase space Wigner distribution on the
classical trajectory \emph{alone} does not imply transition to classical
behavior. An analysis of the behavior of the \emph{classicality parameter},
which was introduced in Paper I, leads to the conclusion that strong particle
production is necessary for the quantum state to become highly correlated in
phase space at late times.Comment: RevTeX 4; 27 pages; 18 figures; second of a series of two papers, the
first being arXiv:0708.1233 [gr-qc]; high resolution figures available from
the authors on reques

### Particle creation, classicality and related issues in quantum field theory: I. Formalism and toy models

The quantum theory of a harmonic oscillator with a time dependent frequency
arises in several important physical problems, especially in the study of
quantum field theory in an external background. While the mathematics of this
system is straightforward, several conceptual issues arise in such a study. We
present a general formalism to address some of the conceptual issues like the
emergence of classicality, definition of particle content, back reaction etc.
In particular, we parametrize the wave function in terms of a complex number
(which we call excitation parameter) and express all physically relevant
quantities in terms it. Many of the notions -- like those of particle number
density, effective Lagrangian etc., which are usually defined using asymptotic
in-out states -- are generalized as time-dependent concepts and we show that
these generalized definitions lead to useful and reasonable results. Having
developed the general formalism we apply it to several examples. Exact analytic
expressions are found for a particular toy model and approximate analytic
solutions are obtained in the extreme cases of adiabatic and highly
non-adiabatic evolution. We then work out the exact results numerically for a
variety of models and compare them with the analytic results and
approximations. The formalism is useful in addressing the question of emergence
of classicality of the quantum state, its relation to particle production and
to clarify several conceptual issues related to this. In Paper II
(arXiv:0708.1237), which is a sequel to this, the formalism will be applied to
analyze the corresponding issues in the context of quantum field theory in
background cosmological models and electric fields.Comment: RevTeX 4; 32 pages; 28 figures; first of a series of two papers, the
second being arXiv:0708.1237 [gr-qc]; high resolution figures available from
the authors on reques

### Large-scale magnetic fields from inflation in dilaton electromagnetism

The generation of large-scale magnetic fields is studied in dilaton
electromagnetism in inflationary cosmology, taking into account the dilaton's
evolution throughout inflation and reheating until it is stabilized with
possible entropy production. It is shown that large-scale magnetic fields with
observationally interesting strength at the present time could be generated if
the conformal invariance of the Maxwell theory is broken through the coupling
between the dilaton and electromagnetic fields in such a way that the resultant
quantum fluctuations in the magnetic field has a nearly scale-invariant
spectrum. If this condition is met, the amplitude of the generated magnetic
field could be sufficiently large even in the case huge amount of entropy is
produced with the dilution factor $\sim 10^{24}$ as the dilaton decays.Comment: 28 pages, 5 figures, the version accepted for publication in Phys.
Rev. D; some references are adde

### Why Does Inflation Start at the Top of the Hill?

We show why the universe started in an unstable de Sitter state. The quantum
origin of our universe implies one must take a `top down' approach to the
problem of initial conditions in cosmology, in which the histories that
contribute to the path integral, depend on the observable being measured. Using
the no boundary proposal to specify the class of histories, we study the
quantum cosmological origin of an inflationary universe in theories like trace
anomaly driven inflation in which the effective potential has a local maximum.
We find that an expanding universe is most likely to emerge in an unstable de
Sitter state, by semiclassical tunneling via a Hawking-Moss instanton. Since
the top down view is forced upon us by the quantum nature of the universe, we
argue that the approach developed here should still apply when the framework of
quantum cosmology will be based on M-Theory.Comment: 21 pages, 1 figur

- â€¦