6 research outputs found

    Photovoltaics, Batteries, and Silicon Carbide Power Electronics Based Infrastructure for Sustainable Power Networks

    Get PDF
    The consequences of climate change have emphasized the need for a power network that is centered around clean, green, and renewable sources of energy. Currently, Photovoltaics (PV) and wind turbines are the only two modes of technology that can convert renewable energy of the sun and wind respectively into large-scale power for the electricity network. This dissertation aims at providing a novel solution to implement these sources of power (majorly PV) coupled with Lithium-ion battery storage in an efficient and sustainable approach. Such a power network can enable efficiency, reliability, low-cost, and sustainability with minimum impact to the environment. The first chapter illustrates the utilization of PV- and battery-based local power networks for low voltage loads as well as the significance of local DC power in the transportation sector. Chapter two focuses on the most efficient and maximum utilization of PV and battery power in an AC infrastructure. A simulated use-case for load satisfaction and feasibility analysis of 10 university-scale buildings is illustrated. The role of PV- and battery-based networks to fulfill the new demand from the electrification of the surface transportation sector discussed in Chapter three. Chapter four analyzes the PV- and battery- based network on a global perspective and proposes a DC power network with PV and complementary wind power to fulfill the power needs across the globe. Finally, the role of SiC power electronics and the design concept for an SiC based DC-to-DC converter for maximum utilization of PV/wind and battery power through enabling HVDC transmission is discussed in Chapter six

    (Invited) Emerging Role of Silicon Carbide and Gallium Nitride Based Power Electronics in Power and Transportation Sectors

    Get PDF
    Free fuel-based energy sources (solar and wind) are pointing towards a future in which sustainable energy is affordable, abundant and deployed with high energy efficiency. Driven by advancements in the technology of lithium batteries and the availability of low-cost sustainable clean electric power, the electrification of transportation is going through fundamental disruptive transformation. Without any doubt, both power and transportation sectors will provide phenomenal growth of power electronics in the 21st century. Recently, both SiC and GaN are drawing the attention as potential replacement of Si-based power electronics. These may open some new markets where Si based power electronics cannot function either due to power or temperature limitations. In this paper we have identified the WBG based key power electronics products that should be focused to see their high growth

    Transformative and Disruptive Role of Local Direct Current Power Networks in Power and Transportation Sectors

    Get PDF
    The power sector is about to undergo a major disruptive transformation. In this paper, we have discussed the best possible energy solution for addressing the challenges of climate change and eradication of energy poverty. This paper focusses on the decentralized power generation, storage and distribution through photovoltaics and lithium batteries. It encompasses the need for local direct current (DC) power through the factors driving this change. The importance of local DC power in the transportation sector is also established. Finally, we conclude with data bolstering our argument towards the paradigm shift in the power network

    TRANSFORMATIVE AND DISRUPTIVE ROLE OF LOCAL DIRECT CURRENT POWER NETWORKS IN POWER AND TRANSPORTATION SECTORS

    Get PDF
    The power sector is about to undergo a major disruptive transformation. In this paper, we have discussed the best possible energy solution for addressing the challenges of climate change and eradication of energy poverty. This paper focusses on the decentralized power generation, storage and distribution through photovoltaics and lithium batteries. It encompasses the need for local direct current (DC) power through the factors driving this change. The importance of local DC power in the transportation sector is also established. Finally, we conclude with data bolstering our argument towards the paradigm shift in the power network

    Photovoltaics- and Battery-Based Power Network as Sustainable Source of Electric Power

    Get PDF
    With the rise in the utilization of free fuel energy sources, namely solar and wind, across the globe, it has become necessary to study and implement models of a sustainable power network. This paper focuses on the design of a conceptual power network based on photovoltaics (PV) for power generation and lithium-ion batteries for storage. The power system showcases the various metrics that are involved in a grid-tied PV- and battery-based power network. It also encompasses the various design parameters and sizing considerations to design and conceptualize such a power network. The model focuses on the importance of the conservation of power by avoiding wastage of generated power through inverter sizing and design considerations. Finally, an economic and feasibility analysis is carried out to showcase the economic viability of the PV- and battery-based power network in today’s alternating current (AC)-based grid

    Sustainable Intelligent Charging Infrastructure for Electrification of Transportation

    No full text
    For sustainable electrification of surface transportation, a viable charging infrastructure is necessary. Firstly, this paper focuses on emphasizing the viability of a free fuel-based photovoltaics and/or wind turbines and lithium-ion battery-based power network to enable sustainable electric power. The importance of power electronics for a DC-based power network and extremely fast charger based on DC power is presented. Finally, the core design concepts of intelligent charging infrastructure using an intelligent energy management system are discussed. The paper aims to cover all aspects associated with a clean, reliable, efficient, and cost-effective solution to the novel charging infrastructure
    corecore