3,566 research outputs found

### Canonical Quantization of Spherically Symmetric Dust Collapse

Quantum gravity effects are likely to play a crucial role in determining the
outcome of gravitational collapse during its final stages. In this contribution
we will outline a canonical quantization of the LeMaitre-Tolman-Bondi models,
which describe the collapse of spherical, inhomogeneous, non-rotating dust.
Although there are many models of gravitational collapse, this particular class
of models stands out for its simplicity and the fact that both black holes and
naked singularity end states may be realized on the classical level, depending
on the initial conditions. We will obtain the appropriate Wheeler-DeWitt
equation and then solve it exactly, after regularization on a spatial lattice.
The solutions describe Hawking radiation and provide an elegant microcanonical
description of black hole entropy, but they raise other questions, most
importantly concerning the nature of gravity's fundamental degrees of freedom.Comment: 19 pages no figures. Contribution to a festschrift in honor of Joshua
N. Goldber

### Non-Markovian Dynamics of Charge Carriers in Quantum Dots

We have investigated the dynamics of bound particles in multilevel
current-carrying quantum dots. We look specifically in the regime of resonant
tunnelling transport, where several channels are available for transport.
Through a non-Markovian formalism under the Born approximation, we investigate
the real-time evolution of the confined particles including transport-induced
decoherence and relaxation. In the case of a coherent superposition between
states with different particle number, we find that a Fock-space coherence may
be preserved even in the presence of tunneling into and out of the dot.
Real-time results are presented for various asymmetries of tunneling rates into
different orbitals.Comment: 9 pages, 3 figures, International Workshop on Physics-Based
Mathematical Models for Low-Dimensional Semiconductor Nanostructures. BIRS,
November 18-23, 200

### Quantum Gravitational Collapse and Hawking Radiation in 2+1 Dimensions

We develop the canonical theory of gravitational collapse in 2+1 dimensions
with a negative cosmological constant and obtain exact solutions of the
Wheeler--DeWitt equation regularized on a lattice. We employ these solutions to
derive the Hawking radiation from black holes formed in all models of dust
collapse. We obtain an (approximate) Planck spectrum near the horizon
characterized by the Hawking temperature $T_{\mathrm H}=\hbar\sqrt{G\Lambda
M}/2\pi$, where $M$ is the mass of a black hole that is presumed to form at the
center of the collapsing matter cloud and $-\Lambda$ is the cosmological
constant. Our solutions to the Wheeler-DeWitt equation are exact, so we are
able to reliably compute the greybody factors that result from going beyond the
near horizon region.Comment: 27 pages, no figure

### Quantum general relativity and Hawking radiation

In a previous paper we have set up the Wheeler-DeWitt equation which
describes the quantum general relativistic collapse of a spherical dust cloud.
In the present paper we specialize this equation to the case of matter
perturbations around a black hole, and show that in the WKB approximation, the
wave-functional describes an eternal black hole in equilibrium with a thermal
bath at Hawking temperature.Comment: 13 pages, minor revisions in: (i) para 5 of Introduction, (ii) para
following Eqn. (10). Revised version to appear in Phys. Rev.

### Near-Infrared Time-Series Photometry in the Field of Cygnus OB2 Association I - Rotational Scenario For Candidate Members

In the last decades, the early pre main sequence stellar rotational evolution
picture has been constrained by studies targeting different young regions at a
variety of ages. Observational studies suggest a mass-rotation dependence, and
for some mass ranges a connection between rotation and the presence of a
circumstellar disk. Not still fully explored, though, is the role of
environmental conditions on the rotational regulation.
We investigate the rotational properties of candidate members of the young
massive association Cygnus OB2. The Stetson variability index, Lomb-Scargle
periodogram, Saunders statistics, string/rope length method, and visual
verification of folded light curves were applied to select 1224 periodic
variable stars. Completeness and contamination of the periodic sample was
derived from Monte Carlo simulations, out of which 894 periods were considered
reliable. Our study was considered reasonably complete for periods from 2 to 30
days.
The general rotational scenario seen in other young regions is confirmed by
Cygnus OB2 period distributions, with disked stars rotating on average slower
than non-disked stars. A mass-rotation dependence was also verified, but as in
NGC 6530, lower mass stars are rotating on average slower than higher mass
stars, with an excess of slow rotators among the lower mass population. The
effect of the environment on the rotational properties of the association was
investigated by re-analysing the results while taking into account the incident
UV radiation arising from O stars in the association. Results compatible with
the disk-locking scenario were verified for stars with low UV incidence, but no
statistical significant relation between rotation and disk presence was
verified for stars with high UV incidence suggesting that massive stars can
have an important role on regulating the rotation of nearby low mass stars.Comment: Submitted on December 23, 201

- …