1,226 research outputs found

    Isotopic Composition of Fragments in Nuclear Multifragmentation

    Full text link
    The isotope yields of fragments, produced in the decay of the quasiprojectile in Au+Au peripheral collisions at 35 MeV/nucleon and those coming from the disassembly of the unique source formed in Xe+Cu central reactions at 30 MeV/nucleon, were measured. We show that the relative yields of neutron-rich isotopes increase with the excitation energy in multifragmentation reaction. In the framework of the statistical multifragmentation model which fairly well reproduces the experimental observables, this behaviour can be explained by increasing N/Z ratio of hot primary fragments, that corresponds to the statistical evolution of the decay mechanism with the excitation energy: from a compound-like decay to complete multifragmentation.Comment: 10 pages. 4 Postscript figures. Submitted to Physical Review C, Rapid Communicatio

    Isotopic composition of fragments in multifragmentation of very large nuclear systems: effects of the chemical equilibrium

    Full text link
    Studies on the isospin of fragments resulting from the disassembly of highly excited large thermal-like nuclear emitting sources, formed in the ^{197}Au + ^{197}Au reaction at 35 MeV/nucleon beam energy, are presented. Two different decay systems (the quasiprojectile formed in midperipheral reactions and the unique source coming from the incomplete fusion of projectile and target in the most central collisions) were considered; these emitting sources have the same initial N/Z ratio and excitation energy (E^* ~= 5--6 MeV/nucleon), but different size. Their charge yields and isotopic content of the fragments show different distributions. It is observed that the neutron content of intermediate mass fragments increases with the size of the source. These evidences are consistent with chemical equilibrium reached in the systems. This fact is confirmed by the analysis with the statistical multifragmentation model.Comment: 9 pages, 4 ps figure

    Plastic adjustments of biparental care behavior across embryonic development under elevated temperature in a marine ectotherm

    Get PDF
    Phenotypic plasticity in parental care investment allows organisms to promptly respond to rapid environmental changes by potentially benefiting offspring survival and thus parental fitness. To date, a knowledge gap exists on whether plasticity in parental care behaviors can mediate responses to climate change in marine ectotherms. Here, we assessed the plasticity of parental care investment under elevated temperatures in a gonochoric marine annelid with biparental care, Ophryotrocha labronica, and investigated its role in maintaining the reproductive success of this species in a warming ocean. We measured the time individuals spent carrying out parental care activities across three phases of embryonic development, as well as the hatching success of the offspring as a proxy for reproductive success, at control (24℃) and elevated (27℃) temperature conditions. Under elevated temperature, we observed: (a) a significant decrease in total parental care activity, underpinned by a decreased in male and simultaneous parental care activity, in the late stage of embryonic development; and (b) a reduction in hatching success that was however not significantly related to changes in parental care activity levels. These findings, along with the observed unaltered somatic growth of parents and decreased brood size, suggest that potential cost-benefit trade-offs between offspring survival (i.e., immediate fitness) and parents' somatic condition (i.e., longer-term fitness potential) may occur under ongoing ocean warming. Finally, our results suggest that plasticity in parental care behavior is a mechanism able to partially mitigate the negative effects of temperature-dependent impacts

    Quantitative extensions of reaction systems based on SOS semantics

    Get PDF
    Reaction systems (RSs) are a successful natural computing framework inspired by chemical reaction networks. A RS consists of a set of entities and a set of reactions. Entities can enable or inhibit each reaction and are produced by reactions or provided by the environment. In this paper, we define two quantitative variants of RSs: the first one is along the time dimension, to specify delays for making available reactions products and durations to protract their permanency, while the second deals with the possibility to specify different concentration levels of a substance in order to enable or inhibit a reaction. Technically, both extensions are obtained by modifying in a modular way the Structural Operational Semantics (SOS) for RSs that was already defined in the literature. Our approach maintains several advantages of the original semantics definition that were: (1) providing a formal specification of the RS dynamics that enables the reuse of many formal analysis techniques and favours the implementation of tools, and (2) making the RS framework extensible, by adding or changing some of the SOS rules in a compositional way. We provide a prototype logic programming implementation and apply our tool to three different case studies: the tumour growth, the Th cell differentiation in the immune system and neural communication

    Ejector characterization for refrigeration applications with natural refrigerants

    Get PDF
    Employing natural fluids in refrigerating plants at warm climate conditions sometimes impacts negatively on the system performance. Ejectors can play a key role in configurations aiming at improving the efficiency of such systems, however their geometry has to be optimized in order to gain the best benefit. Scope of this work is a numerical investigation on the geometry of the ejector in a cascade plant configuration with natural refrigerants, aiming at identifying the influence of various geometry aspects on the performance of the system. A one-dimensional model is employed for the ejector, while the performance of the refrigerating plant is evaluated in different operating conditions in order to seek the optimal configuration

    Morphology, rheological and mechanical properties of isotropic and anisotropic PP/rPET/GnP nanocomposite samples

    Get PDF
    The effect of graphene nanoplatelets (GnPs) on the morphology, rheological, and mechanical properties of isotropic and anisotropic polypropylene (PP)/recycled polyethylene terephthalate (rPET)-based nanocomposite are reported. All the samples were prepared by melt mixing. PP/rPET and PP/rPET/GnP isotropic sheets were prepared by compression molding, whereas the anisotropic fibers were spun using a drawing module of a capillary viscometer. The results obtained showed that the viscosity of the blend is reduced by the presence of GnP due to the lubricating effect of the graphene platelets. However, the Cox–Merz rule is not respected. Compared to the PP/rPET blend, the GnP led to a slight increase in the elastic modulus. However, it causes a slight decrease in elongation at break. Morphological analysis revealed a poor adhesion between the PP and PET phases. Moreover, GnPs distribute around the droplets of the PET phase with a honey-like appearance. Finally, the effect of the orientation on both systems gives rise not only to fibers with higher modulus values, but also with high deformability and a fibrillar morphology of the dispersed PET phase. A fragile-ductile transition driven by the orientation was observed in both systems

    A combined crystallographic and computational study on dexketoprofen trometamol dihydrate salt

    Get PDF
    Dexketoprofen trometamol is the tromethamine salt of dexketoprofen [(2S)-2-(3-benzoylphenyl)propanoic acid-2-amino-2-(hydroxymethyl)propane-1,3-diol], a nonsteroidal anti-inflammatory drug (NSAID) used for the treatment of moderate- to strong-intensity acute pain. The crystal structure of the hitherto sole known hydrate phase of dexketoprofen trometamol (DK-T_2H2O), as determined by single-crystal X-ray diffraction, is presented. The water molecules are arranged in dimers included in isolated sites and sandwiched between piles of trometamol cations. The molecular and crystal structures of DK-T_2H2O are analyzed and compared to those of the parent anhydrous crystal form DK-T_A. In both the crystal structures, all the potential H-bond donors and acceptor of the dexketoprofen and trometamol ions are engaged, and both the species crystallize in the P21 space group. However, during the DK-T_A➔DK-T_2H2O hydration process, the unique symmetry axis is not conserved, i.e., the ions are arranged in a different way with respect to the screw axis, even if the two crystal structures maintain structural blocks of DK anions and T cations. Quantum mechanical solid-state calculations provide some hints for the possible intermediate structure during the crystalline–crystalline hydration/dehydration process

    Evidence of non-statistical structures in the elastic and inelastic scattering of58Ni+58Ni and58Ni+62Ni and intermediate dinuclear states

    Get PDF
    Excitation functions and angular distributions of58Ni+58Ni and58Ni+62Ni scattering at energies just above the Coulomb barrier have been measured aroundξcm=90° in energy stepsΔEcm=0.25 MeV fromEcm ⋍ 110 MeV toEcm ⋍ 120 MeV for58Ni+58Ni and fromEcm ⋍ 110 MeV toEcm ⋍ 118 MeV for58Ni+62Ni. Evidence for structure of non-statistical character has been found in the angle-summed excitation functions; this evidence is corroborated by the analysis of the angular distributions. This is the first time that non-statistical structure in elastic and inelastic scattering is reported with high confidence level for this mass and excitation energy ranges. Attempts are presented to understand the nature of this structure, including the presence of intermediate dinuclear states and virtual states in a potential well