50 research outputs found

    The p.(Cys150Tyr) variant in CSRP3 is associated with late-onset hypertrophic cardiomyopathy in heterozygous individuals

    Get PDF
    INTRODUCTION AND OBJECTIVES: Up to 50% of patients with hypertrophic cardiomyopathy (HCM) show no disease-causing variants in genetic studies. Mutations in CSRP3 have been associated with HCM, but evidence supporting pathogenicity is inconclusive. In this study, we describe an HCM cohort with a missense variant in CSRP3 (p.Cys150Tyr) with supporting evidence for pathogenicity and a description of the associated phenotype. METHODS: CSRP3 was sequenced in 6456 index cases with a diagnosis of HCM and in 5012 probands with other cardiomyopathies. In addition, 3372 index cases with hereditary cardiovascular disorders other than cardiomyopathies (mainly channelopathies and aortopathies) were used as controls. RESULTS: The p.(Cys150Tyr) variant was identified in 11 unrelated individuals of the 6456 HCM probands, and it was not identified in patients with other cardiomyopathies (p‚ÄĮ<‚ÄĮ0.0001) or in our control population (p‚ÄĮ<‚ÄĮ0.0001). Ten of the index cases were heterozygous and one was homozygous. Homozygous had a more severe phenotype. Family screening identified 17 other carriers. Wild-type individuals showed no signs of disease. The mean age at diagnosis of affected individuals was 55‚ÄĮ¬Ī‚ÄĮ13 years, and the mean left ventricular wall thickness was 18‚ÄĮ¬Ī‚ÄĮ3‚ÄĮmm. The variant showed highly age-dependent penetrance. After a mean follow-up of 11 (¬Ī8) years, no adverse events were reported in any of the HCM patients. CONCLUSIONS: The p.(Cys150Tyr) variant in CSRP3 causes late-onset and low risk form of hypertrophic cardiomyopathy in heterozygous carriers

    iPSC-Based Modeling of Variable Clinical Presentation in Hypertrophic Cardiomyopathy.

    Get PDF
    BACKGROUND Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disease and a frequent cause of heart failure and sudden cardiac death. Our understanding of the genetic bases and pathogenic mechanisms underlying HCM has improved significantly in the recent past, but the combined effect of various pathogenic gene variants and the influence of genetic modifiers in disease manifestation are very poorly understood. Here, we set out to investigate genotype-phenotype relationships in 2 siblings with an extensive family history of HCM, both carrying a pathogenic truncating variant in the MYBPC3 gene (p.Lys600Asnfs*2), but who exhibited highly divergent clinical manifestations. METHODS We used a combination of induced pluripotent stem cell (iPSC)-based disease modeling and CRISPR (clustered regularly interspersed short palindromic repeats)/Cas9 (CRISPR-associated protein 9)-mediated genome editing to generate patient-specific cardiomyocytes (iPSC-CMs) and isogenic controls lacking the pathogenic MYBPC3 variant. RESULTS Mutant iPSC-CMs developed impaired mitochondrial bioenergetics, which was dependent on the presence of the mutation. Moreover, we could detect altered excitation-contraction coupling in iPSC-CMs from the severely affected individual. The pathogenic MYBPC3 variant was found to be necessary, but not sufficient, to induce iPSC-CM hyperexcitability, suggesting the presence of additional genetic modifiers. Whole-exome sequencing of the mutant carriers identified a variant of unknown significance in the MYH7 gene (p.Ile1927Phe) uniquely present in the individual with severe HCM. We finally assessed the pathogenicity of this variant of unknown significance by functionally evaluating iPSC-CMs after editing the variant. CONCLUSIONS Our results indicate that the p.Ile1927Phe variant of unknown significance in MYH7 can be considered as a modifier of HCM expressivity when found in combination with truncating variants in MYBPC3. Overall, our studies show that iPSC-based modeling of clinically discordant subjects provides a unique platform to functionally assess the effect of genetic modifiers.The funding for this research was provided by the Spanish Ministry of Science and Innovation-MCIN (grants PID2021-123925OB-I00, PID2019-104776RB-I00, CB06/01/1056, and CB16/11/00399 financed by MCIN/AEI/10.13039/501100011033), AGAUR (2021-SGR-974), Fundació La Marató de TV3 (201534-30), Fundación BBVA (BIO14_298), Fundació Obra Social la Caixa, and CERCA Program/ Generalitat de Catalunya. The CNIC is supported by the Instituto de Salud Carlos III (ISCIII), the MCIN, and the Pro CNIC Foundation. I. Lazis was partially supported by a predoctoral fellowship from MCIN (PRE2019-087901).S

    Mutations in TRIM63 cause an autosomal-recessive form of hypertrophic cardiomyopathy

    Get PDF
    Objective: Up to 50% of patients with hypertrophic cardiomyopathy (HCM) show no disease-causing variants in genetic studies. TRIM63 has been suggested as a candidate gene for the development of cardiomyopathies, although evidence for a causative role in HCM is limited. We sought to investigate the relationship between rare variants in TRIM63 and the development of HCM. Methods: TRIM63 was sequenced by next generation sequencing in 4867 index cases with a clinical diagnosis of HCM and in 3628 probands with other cardiomyopathies. Additionally, 3136 index cases with familial cardiovascular diseases other than cardiomyopathy (mainly channelopathies and aortic diseases) were used as controls. Results: Sixteen index cases with rare homozygous or compound heterozygous variants in TRIM63 (15 HCM and one restrictive cardiomyopathy) were included. No homozygous or compound heterozygous were identified in the control population. Familial evaluation showed that only homozygous and compound heterozygous had signs of disease, whereas all heterozygous family members were healthy. The mean age at diagnosis was 35 years (range 15-69). Fifty per cent of patients had concentric left ventricular hypertrophy (LVH) and 45% were asymptomatic at the moment of the first examination. Significant degrees of late gadolinium enhancement were detected in 80% of affected individuals, and 20% of patients had left ventricular (LV) systolic dysfunction. Fifty per cent had non-sustained ventricular tachycardia. Twenty per cent of patients suffered an adverse cerebrovascular event (20%). Conclusion: TRIM63 appears to be an uncommon cause of HCM inherited in an autosomal-recessive manner and associated with concentric LVH and a high rate of LV dysfunction

    Truncating FLNC Mutations Are Associated With High-Risk Dilated and Arrhythmogenic Cardiomyopathies

    Get PDF
    BACKGROUND: Filamin C (encoded by the FLNC gene) is essential for sarcomere attachment to the plasmatic membrane. FLNC mutations have been associated with myofibrillar myopathies, and cardiac involvement has been reported in some carriers. Accordingly, since 2012, the authors have included FLNC in the genetic screening of patients with inherited cardiomyopathies and sudden death. OBJECTIVES: The aim of this study was to demonstrate the association between truncating mutations in FLNC and the development of high-risk dilated and arrhythmogenic cardiomyopathies. METHODS: FLNC was studied using next-generation sequencing in 2,877 patients with inherited cardiovascular diseases. A characteristic phenotype was identified in probands with truncating mutations in FLNC. Clinical and genetic evaluation of 28 affected families was performed. Localization of filamin C in cardiac tissue was analyzed in patients with truncating FLNC mutations using immunohistochemistry. RESULTS: Twenty-three truncating mutations were identified in 28 probands previously diagnosed with dilated, arrhythmogenic, or restrictive cardiomyopathies. Truncating FLNC mutations were absent in patients with other phenotypes, including 1,078 patients with hypertrophic cardiomyopathy. Fifty-four mutation carriers were identified among 121 screened relatives. The phenotype consisted of left ventricular dilation (68%), systolic dysfunction (46%), and myocardial fibrosis (67%); inferolateral negative T waves and low QRS voltages on electrocardiography (33%); ventricular arrhythmias (82%); and frequent sudden cardiac death (40 cases in 21 of 28 families). Clinical skeletal myopathy was not observed. Penetrance was >97% in carriers older than 40 years. Truncating mutations in FLNC cosegregated with this phenotype with a dominant inheritance pattern (combined logarithm of the odds score: 9.5). Immunohistochemical staining of myocardial tissue showed no abnormal filamin C aggregates in patients with truncating FLNC mutations. CONCLUSIONS: Truncating mutations in FLNC caused an overlapping phenotype of dilated and left-dominant arrhythmogenic cardiomyopathies complicated by frequent premature sudden death. Prompt implantation of a cardiac defibrillator should be considered in affected patients harboring truncating mutations in FLNC.Instituto de Salud Carlos III [PI11/0699, PI14/0967, PI14/01477, RD012/0042/0029, RD012/0042/0049, RD012/0042/0066, RD12/0042/0069]; Spanish Ministry of Economy and Competitiveness [SAF2015-71863-REDT]; Plan Nacional de I+D+I; Plan Estatalde I+D+I, European Regional Development Fund; Health in Code SLS

    Predictores de riesgo en una cohorte espa√Īola con cardiolaminopat√≠as. Registro REDLAMINA

    Get PDF
    [Abstract] Introduction and objectives. According to sudden cardiac death guidelines, an implantable cardioverter-defibrillator (ICD) should be considered in patients with LMNA-related dilated cardiomyopathy (DCM) and ‚Č• 2 risk factors: male sex, left ventricular ejection fraction (LVEF) < 45%, nonsustained ventricular tachycardia (NSVT), and nonmissense genetic variants. In this study we aimed to describe the clinical characteristics of carriers of LMNA genetic variants among individuals from a Spanish cardiac-laminopathies cohort (REDLAMINA registry) and to assess previously reported risk criteria. Methods. The relationship between risk factors and cardiovascular events was evaluated in a cohort of 140 carriers (age ‚Č• 16 years) of pathogenic LMNA variants (54 probands, 86 relatives). We considered: a) major arrhythmic events (MAE) if there was appropriate ICD discharge or sudden cardiac death; b) heart failure death if there was heart transplant or death due to heart failure. Results. We identified 11 novel and 21 previously reported LMNA-related DCM variants. LVEF < 45% (P = .001) and NSVT (P < .001) were related to MAE, but not sex or type of genetic variant. The only factor independently related to heart failure death was LVEF < 45% (P < .001). Conclusions. In the REDLAMINA registry cohort, the only predictors independently associated with MAE were NSVT and LVEF < 45%. Therefore, female carriers of missense variants with either NSVT or LVEF < 45% should not be considered a low-risk group. It is important to individualize risk stratification in carriers of LMNA missense variants, because not all have the same prognosis.[Resumen] Introducci√≥n y objetivos. Seg√ļn las gu√≠as de muerte s√ļbita, se debe considerar un desfibrilador autom√°tico implantable (DAI) para los pacientes con miocardiopat√≠a dilatada debida a variantes en el gen de la lamina (LMNA) con al menos 2 factores: varones, fracci√≥n de eyecci√≥n del ventr√≠culo izquierdo (FEVI) < 45%, taquicardia ventricular no sostenida (TVNS) y variantes no missense. Nuestro objetivo es describir las caracter√≠sticas cl√≠nicas de una cohorte espa√Īola de pacientes con cardiolaminopat√≠as (registro REDLAMINA) y evaluar los criterios de riesgo vigentes. M√©todos. Se evalu√≥ la relaci√≥n entre factores de riesgo y eventos cardiovasculares en una cohorte de 140 portadores de variantes en LMNA (54 probandos, 86 familiares, edad ‚Č• 16 a√Īos). Se consider√≥: a) evento arr√≠tmico mayor (EAM) si hubo descarga apropiada del DAI o muerte s√ļbita, y b) muerte por insuficiencia cardiaca, incluidos los trasplantes. Resultados. Se identificaron 11 variantes nuevas y 21 previamente publicadas. La FEVI < 45% (p = 0,001) y la TVNS (p < 0,001) se relacionaron con los EAM, pero no el sexo o el tipo de variante (missense frente a no missense). La FEVI < 45% (p < 0,001) fue el √ļnico factor relacionado con la muerte por insuficiencia cardiaca. Conclusiones. En el registro REDLAMINA, los √ļnicos 2 predictores asociados con EAM fueron la TVNS y la FEVI < 45%. No se deber√≠a considerar grupo de bajo riesgo a las portadoras de variantes missense con TVNS o FEVI < 45%. Es importante individualizar la estratificaci√≥n del riesgo de los portadores de variantes missense en LMNA, porque no todas tienen el mismo pron√≥stico.This study received a grant from the Proyecto de investigaci√≥n de la Secci√≥n de Insuficiencia Cardiaca 2017 from the Spanish Society of Cardiology and grants from the Instituto de Salud Carlos III (ISCIII) [PI14/0967, PI15/01551, AC16/0014] and ERA-CVD Joint Transnational Call 2016 (Genprovic). Grants from the ISCIII and the Ministerio de Econom√≠a y Competitividad de Espa√Īa (Spanish Department of Economy and Competitiveness) are supported by the Plan Estatal de I+D+i 2013-2016: Fondo Europeo de Desarrollo Regional (FEDER) ‚ÄúUna forma de hacer Europa‚ÄĚ

    Atlas of the clinical genetics of human dilated cardiomyopathy

    Get PDF
    [Abstract] Aim. Numerous genes are known to cause dilated cardiomyopathy (DCM). However, until now technological limitations have hindered elucidation of the contribution of all clinically relevant disease genes to DCM phenotypes in larger cohorts. We now utilized next-generation sequencing to overcome these limitations and screened all DCM disease genes in a large cohort. Methods and results. In this multi-centre, multi-national study, we have enrolled 639 patients with sporadic or familial DCM. To all samples, we applied a standardized protocol for ultra-high coverage next-generation sequencing of 84 genes, leading to 99.1% coverage of the target region with at least 50-fold and a mean read depth of 2415. In this well characterized cohort, we find the highest number of known cardiomyopathy mutations in plakophilin-2, myosin-binding protein C-3, and desmoplakin. When we include yet unknown but predicted disease variants, we find titin, plakophilin-2, myosin-binding protein-C 3, desmoplakin, ryanodine receptor 2, desmocollin-2, desmoglein-2, and SCN5A variants among the most commonly mutated genes. The overlap between DCM, hypertrophic cardiomyopathy (HCM), and channelopathy causing mutations is considerably high. Of note, we find that >38% of patients have compound or combined mutations and 12.8% have three or even more mutations. When comparing patients recruited in the eight participating European countries we find remarkably little differences in mutation frequencies and affected genes. Conclusion. This is to our knowledge, the first study that comprehensively investigated the genetics of DCM in a large-scale cohort and across a broad gene panel of the known DCM genes. Our results underline the high analytical quality and feasibility of Next-Generation Sequencing in clinical genetic diagnostics and provide a sound database of the genetic causes of DCM.H√īpitaux de Paris; PHRC AOM0414

    Alpha-protein kinase 3 (ALPK3)-truncating variants are a cause of autosomal dominant hypertrophic cardiomyopathy.

    Get PDF
    AIMS: The aim of this study was to determine the frequency of heterozygous truncating ALPK3 variants (ALPK3tv) in patients with hypertrophic cardiomyopathy (HCM) and confirm their pathogenicity using burden testing in independent cohorts and family co-segregation studies. METHODS AND RESULTS‚ÄÉ: In a discovery cohort of 770 index patients with HCM, 12 (1.56%) were heterozygous for ALPK3tv [odds ratio(OR) 16.01, 95% confidence interval (CI) 7.89-29.74, P‚ÄČ<‚ÄČ8.36e-11] compared to the Genome Aggregation Database (gnomAD) population. In a validation cohort of 2047 HCM probands, 32 (1.56%) carried heterozygous ALPK3tv (OR 16.17, 95% CI 10.31-24.87, P‚ÄČ<‚ÄČ2.2e-16, compared to gnomAD). Combined logarithm of odds score in seven families with ALPK3tv was 2.99. In comparison with a cohort of genotyped patients with HCM (n‚ÄČ=‚ÄČ1679) with and without pathogenic sarcomere gene variants (SP+ and SP-), ALPK3tv carriers had a higher prevalence of apical/concentric patterns of hypertrophy (60%, P‚ÄČ<‚ÄČ0.001) and of a short PR interval (10%, P‚ÄČ=‚ÄČ0.009). Age at diagnosis and maximum left ventricular wall thickness were similar to SP- and left ventricular systolic impairment (6%) and non-sustained ventricular tachycardia (31%) at baseline similar to SP+. After 5.3‚ÄȬĪ‚ÄČ5.7‚ÄČyears, 4 (9%) patients with ALPK3tv died of heart failure or had cardiac transplantation (log-rank P‚ÄČ=‚ÄČ0.012 vs. SP- and P‚ÄČ=‚ÄČ0.425 vs. SP+). Imaging and histopathology showed extensive myocardial fibrosis and myocyte vacuolation. CONCLUSIONS‚ÄÉ: Heterozygous ALPK3tv are pathogenic and segregate with a characteristic HCM phenotype

    Atlas of the clinical genetics of human dilated cardiomyopathy

    Get PDF
    AIM: Numerous genes are known to cause dilated cardiomyopathy (DCM). However, until now technological limitations have hindered elucidation of the contribution of all clinically relevant disease genes to DCM phenotypes in larger cohorts. We now utilized next-generation sequencing to overcome these limitations and screened all DCM disease genes in a large cohort. METHODS AND RESULTS: In this multi-centre, multi-national study, we have enrolled 639 patients with sporadic or familial DCM. To all samples, we applied a standardized protocol for ultra-high coverage next-generation sequencing of 84 genes, leading to 99.1% coverage of the target region with at least 50-fold and a mean read depth of 2415. In this well characterized cohort, we find the highest number of known cardiomyopathy mutations in plakophilin-2, myosin-binding protein C-3, and desmoplakin. When we include yet unknown but predicted disease variants, we find titin, plakophilin-2, myosin-binding protein-C 3, desmoplakin, ryanodine receptor 2, desmocollin-2, desmoglein-2, and SCN5A variants among the most commonly mutated genes. The overlap between DCM, hypertrophic cardiomyopathy (HCM), and channelopathy causing mutations is considerably high. Of note, we find that >38% of patients have compound or combined mutations and 12.8% have three or even more mutations. When comparing patients recruited in the eight participating European countries we find remarkably little differences in mutation frequencies and affected genes. CONCLUSIONS: This is to our knowledge, the first study that comprehensively investigated the genetics of DCM in a large-scale cohort and across a broad gene panel of the known DCM genes. Our results underline the high analytical quality and feasibility of Next-Generation Sequencing in clinical genetic diagnostics and provide a sound database of the genetic causes of DCM
    corecore