1,413 research outputs found

    Time Dependent Current Oscillations Through a Quantum Dot

    Full text link
    Time dependent phenomena associated to charge transport along a quantum dot in the charge quantization regime is studied. Superimposed to the Coulomb blockade behaviour the current has novel non-linear properties. Together with static multistabilities in the negative resistance region of the I-V characteristic curve, strong correlations at the dot give rise to self-sustained current and charge oscillations. Their properties depend upon the parameters of the quantum dot and the external applied voltages.Comment: 4 pages, 3 figures; to appear in PR

    Molecular Gas, Dust and Star Formation in Galaxies: II. Dust properties and scalings in \sim\ 1600 nearby galaxies

    Full text link
    We aim to characterize the relationship between dust properties. We also aim to provide equations to estimate accurate dust properties from limited observational datasets. We assemble a sample of 1,630 nearby (z<0.1) galaxies-over a large range of Mstar, SFR - with multi-wavelength observations available from wise, iras, planck and/or SCUBA. The characterization of dust emission comes from SED fitting using Draine & Li dust models, which we parametrize using two components (warm and cold ). The subsample of these galaxies with global measurements of CO and/or HI are used to explore the molecular and/or atomic gas content of the galaxies. The total Lir, Mdust and dust temperature of the cold component (Tc) form a plane that we refer to as the dust plane. A galaxy's sSFR drives its position on the dust plane: starburst galaxies show higher Lir, Mdust and Tc compared to Main Sequence and passive galaxies. Starburst galaxies also show higher specific Mdust (Mdust/Mstar) and specific Mgas (Mgas/Mstar). The Mdust is more closely correlated with the total Mgas (atomic plus molecular) than with the individual components. Our multi wavelength data allows us to define several equations to estimate Lir, Mdust and Tc from one or two monochromatic luminosities in the infrared and/or sub-millimeter. We estimate the dust mass and infrared luminosity from a single monochromatic luminosity within the R-J tail of the dust emission, with errors of 0.12 and 0.20dex, respectively. These errors are reduced to 0.05 and 0.10 dex, respectively, if the Tc is used. The Mdust is correlated with the total Mism (Mism \propto Mdust^0.7). For galaxies with Mstar 8.5<log(Mstar/Msun) < 11.9, the conversion factor \alpha_850mum shows a large scatter (rms=0.29dex). The SF mode of a galaxy shows a correlation with both the Mgass and Mdust: high Mdust/Mstar galaxies are gas-rich and show the highest SFRs.Comment: 24 pages, 28 figures, 6 tables, Accepted for publication in A&

    Very high energy gamma-ray emission from X-ray transients during major outbursts

    Get PDF
    Context: Some high mass X-ray binaries (HMXB) have been recently confirmed as gamma-ray sources by ground based Cherenkov telescopes. In this work, we discuss the gamma-ray emission from X-ray transient sources formed by a Be star and a highly magnetized neutron star. This kind of systems can produce variable hadronic gamma-ray emission through the mechanism proposed by Cheng and Ruderman, where a proton beam accelerated in the pulsar magnetosphere impacts the transient accretion disk. We choose as case of study the best known system of this class: A0535+26. Aims: We aim at making quantitative predictions about the very high-energy radiation generated in Be-X ray binary systems with strongly magnetized neutron stars. Methods: We study the gamma-ray emission generated during a major X-ray outburst of a HMXB adopting for the model the parameters of A0535+26. The emerging photon signal from the disk is determined by the grammage of the disk that modulates the optical depth. The electromagnetic cascades initiated by photons absorbed in the disk are explored, making use of the so-called "Approximation A" to solve the cascade equations. Very high energy photons induce Inverse Compton cascades in the photon field of the massive star. We implemented Monte Carlo simulations of these cascades, in order to estimate the characteristics of the resulting spectrum. Results: TeV emission should be detectable by Cherenkov telescopes during a major X-ray outburst of a binary formed by a Be star and a highly magnetized neutron star. The gamma-ray light curve is found to evolve in anti-correlation with the X-ray signal.Comment: 8 pages, 7 figures, accepted for publication in Astronomy and Astrophysical journa
    • ‚Ķ
    corecore