1,223 research outputs found

    Evolutionary plasticity of developmental gene regulatory network architecture

    Get PDF
    Sea stars and sea urchins evolved from a last common ancestor that lived at the end of the Cambrian, approximately half a billion years ago. In a previous comparative study of the gene regulatory networks (GRNs) that embody the genomic program for embryogenesis in these animals, we discovered an almost perfectly conserved five-gene network subcircuit required for endoderm specification. We show here that the GRN structure upstream and downstream of the conserved network kernel has, by contrast, diverged extensively. Mesoderm specification is accomplished quite differently; the Delta–Notch signaling system is used in radically distinct ways; and various regulatory genes have been coopted to different functions. The conservation of the conserved kernel is thus the more remarkable. The results indicate types of network linkage subject to evolutionary change. An emergent theme is that subcircuit design may be preserved even while the identity of genes performing given roles changes because of alteration in their cis-regulatory control systems

    Transfer of a large gene regulatory apparatus to a new developmental address in echinoid evolution

    Get PDF
    Of the five echinoderm classes, only the modern sea urchins (euechinoids) generate a precociously specified embryonic micromere lineage that ingresses before gastrulation and then secretes the biomineral embryonic skeleton. The gene regulatory network (GRN) underlying the specification and differentiation of this lineage is now known. Many of the same differentiation genes as are used in the biomineralization of the embryo skeleton are also used to make the similar biomineral of the spines and test plates of the adult body. Here, we determine the components of the regulatory state upstream of these differentiation genes that are shared between embryonic and adult skeletogenesis. An abrupt “break point” in the micromere GRN is thus revealed, on one side of which most of the regulatory genes are used in both, and on the other side of which the regulatory apparatus is entirely micromere-specific. This reveals the specific linkages of the micromere GRN forged in the evolutionary process by which the skeletogenic gene batteries were caused to be activated in the embryonic micromere lineage. We also show, by comparison with adult skeletogenesis in the sea star, a distant echinoderm outgroup, that the regulatory apparatus responsible for driving the skeletogenic differentiation gene batteries is an ancient pleisiomorphic aspect of the echinoderm-specific regulatory heritage

    A triple-GEM telescope for the TOTEM experiment

    Get PDF
    The TOTEM experiment at LHC has chosen the triple Gas Electron Multiplier (GEM) technology for its T2 telescope which will provide charged track reconstruction in the rapidity range 5.3<|eta|<6.5 and a fully inclusive trigger for diffractive events. GEMs are gas-filled detectors that have the advantageous decoupling of the charge amplification structure from the charge collection and readout structure. Furthermore, they combine good spatial resolution with very high rate capability and a good resistance to radiation. Results from a detailed T2 GEM simulation and from laboratory tests on a final design detector performed at CERN are presented.Comment: To appear in the proceedings of 10th Topical Seminar on Innovative Particle and Radiation Detectors (IPRD06), Siena, Italy, October 1-5 200


    Get PDF
    Essential oils (EOs) are hydrophobic concentrated liquids from plants made of volatile chemical compounds. EOs are very popular in the food, cosmetic and pharmaceutical industry as aromas, fragrances and alternative therapeutic devices [1, 2]. EOs are susceptible to degradation reactions, especially of oxidative type, triggered by temperature, light and oxygen availability. A loss of quality and alterations of sensory and pharmacological properties may occur, causing the production of smelly or even harmful compounds, responsible for allergic reactions and skin irritation [3-5]. For preventing and delaying EOs\u2019 spoilage, synthetic preservatives as 2,6-bis(1,1-dimetiletil)-4-metilphenol (BHT) or t-butil-4-hydrohyanisole (BHA) are commonly adopted; but, in addition to a limited efficiency due mainly to poor solubility in oils, they may cause health diseases [6]. Natural polyphenols as gallic acid (GA) are nowadays proposed as safer alternatives, but their efficiency is limited by their low compatibility with hydrophobic material again, or by the occurrence of probable side reactions with oils constituents. Recently, a hydrophobic and biodegradable GA-enriched dendrimer (GAD) (Fig. 1.a) characterised by a nanospherical morphology (Fig. 1.b) and endowed with a remarkable antioxidant activity was synthetized [7]. Further studies currently being completed, have shown that GAD, with respect to free GA, possesses also more efficient antibacterial properties against several antibiotics-resistant G+ strains, inhibits platelet aggregation and ROS accumulation thus representing an excellent alternative to conventional drugs to combat infections and thrombus formation [8]. In this study, based on integrated results obtained from the due investigations, GAD is advised also as an innovative and semi-synthetic preservative additive. a) b) Figure 1. Intuitive representation of GA-enriched dendrimer (GAD) structure (a); SEM images of GAD spherical nanoparticles (b). Scale bars represent 300 nm. In this regard, GAD proved a much more efficient preservative power than free GA and, unlike GA, it never acts as a pro-oxidant. Besides classic oxidation indexes, the desired information was obtained by FT-IR spectroscopy assisted by multivariate analysis (MVA). For further confirmation of the so obtained results, interpretations of FT-IR data by considering the area of some selected informative bands and iodometric titrations to determine the hydro peroxide value (PV) were also performed [9]. References [1] Yamamoto S., SOFW J., 2008, 134, 8. [2] Jiang Y., Wu N., Fu Y.-J., Wang W., Luo M., Zhao C.-J., Zu Y.-G., and Liu Y.-L., Environ. Toxicol. Pharmacol., 2011, 32, 63. [3] Hagvall L., Skold M., Brared-Christensson J., Borje A., and Karlberg A.-T., Contact Dermatitis, 2008, 59, 143. [4] Skold M., Hagvall L., and Karlberg A.-T., Contact Dermatitis, 2008, 58, 9. [5] Brared-Christensson J., Matura M., Gruvberger B., Bruze M., and Karlberg A.-T., Contact Dermatitis, 2010, 62, 32. [6] Hirose M., Takesada Y., Tanaka H., Tamano S., Kato T., and Shirai T., Carcinogenesis, 1998, 19, 207. [7] Alfei S., Catena S., and Turrini F., Drug Deliv. Trans. Res., under review. [8] Alfei S., Signorello M. A., Schito A., Catena S., and Turrini F., results not yet published [9] Alfei S., Oliveri P., and Malegori C., New J. Chem., under review

    Mechanics reveals the role of peristome geometry in prey capture in carnivorous pitcher plants (Nepenthes)

    Get PDF
    Carnivorous pitcher plants (Nepenthes) are a striking example of a natural pitfall trap. The trap’s slippery rim, or peristome, plays a critical role in insect capture via an aquaplaning mechanism that is well documented. Whilst the peristome has received significant research attention, the conspicuous variation in peristome geometry across the genus remains unexplored. We examined the mechanics of prey capture using Nepenthes pitcher plants with divergent peristome geometries. Inspired by living materials, we developed a mathematical model that links the peristomes’ three-dimensional geometries to the physics of prey capture under the laws of Newtonian mechanics. Linking form and function enables us to test hypotheses related to the function of features such as shape and ornamentation, orientation in a gravitational field, and the presence of ‘teeth’, while analysis of the energetic costs and gains of a given geometry provides a means of inferring potential evolutionary pathways. In a separate modeling approach, we show how prey size may correlate with peristome dimensions for optimal capture. Our modeling framework provides a physical platform to understand how divergence in peristome morphology may have evolved in the genus Nepenthes in response to shifts in prey diversity, availability, and size

    Active shape control by plants in dynamic environments

    Full text link
    Plants are a paradigm for active shape control in response to stimuli. For instance, it is well-known that a tilted plant will eventually straighten vertically, demonstrating the influence of both an external stimulus, gravity, and an internal stimulus, proprioception. These effects can be modulated when a potted plant is additionally rotated along the plant's axis, as in a rotating clinostat, leading to intricate shapes. We use a morphoelastic model for the response of growing plants to study the joint effect of both stimuli at all rotation speeds. In the absence of rotation, we identify a universal planar shape towards which all shoots eventually converge. With rotation, we demonstrate the existence of a stable family of three-dimensional dynamic equilibria where the plant axis is fixed in space. Further, the effect of axial growth is to induce steady behaviors, such as solitary waves. Overall, this study offers new insight into the complex out-of-equilibrium dynamics of a plant in three dimensions and further establishes that internal stimuli in active materials are key for robust shape control

    Regulative recovery in the sea urchin embryo and the stabilizing role of fail-safe gene network wiring

    Get PDF
    Design features that ensure reproducible and invariant embryonic processes are major characteristics of current gene regulatory network models. New cis-regulatory studies on a gene regulatory network subcircuit activated early in the development of the sea urchin embryo reveal a sequence of encoded “fail-safe” regulatory devices. These ensure the maintenance of fate separation between skeletogenic and nonskeletogenic mesoderm lineages. An unexpected consequence of the network design revealed in the course of these experiments is that it enables the embryo to “recover” from regulatory interference that has catastrophic effects if this feature is disarmed. A reengineered regulatory system inserted into the embryo was used to prove how this system operates in vivo. Genomically encoded backup control circuitry thus provides the mechanism underlying a specific example of the regulative development for which the sea urchin embryo has long been famous

    The cis-regulatory system of the tbrain gene: Alternative use of multiple modules to promote skeletogenic expression in the sea urchin embryo

    Get PDF
    The genomic cis-regulatory systems controlling regulatory gene expression usually include multiple modules. The regulatory output of such systems at any given time depends on which module is directing the function of the basal transcription apparatus, and ultimately on the transcription factor inputs into that module. Here we examine regulation of the Strongylocentrotus purpuratus tbrain gene, a required activator of the skeletogenic specification state in the lineage descendant from the embryo micromeres. Alternate cis-regulatory modules were found to convey skeletogenic expression in reporter constructs. To determine their relative developmental functions in context, we made use of recombineered BAC constructs containing a GFP reporter and of derivatives from which specific modules had been deleted. The outputs of the various constructs were observed spatially by GFP fluorescence and quantitatively over time by QPCR. In the context of the complete genomic locus, early skeletogenic expression is controlled by an intron enhancer plus a proximal region containing a HesC site as predicted from network analysis. From ingression onward, however, a dedicated distal module utilizing positive Ets1/2 inputs contributes to definitive expression in the skeletogenic mesenchyme. This module also mediates a newly discovered negative Erg input which excludes non-skeletogenic mesodermal expression