1,695 research outputs found

    New applications of advanced instrumental techniques for the characterization of food allergenic proteins

    Get PDF
    Current approaches based on electrophoretic, chromatographic or immunochemical principles have allowed characterizing multiple allergens, mapping their epitopes, studying their mechanisms of action, developing detection and diagnostic methods and therapeutic strategies for the food and pharmaceutical industry. However, some of the common structural features related to the allergenic potential of food proteins remain unknown, or the pathological mechanism of food allergy is not yet fully understood. In addition, it is also necessary to evaluate new allergens from novel protein sources that may pose a new risk for consumers. Technological development has allowed the expansion of advanced technologies for which their whole potential has not been entirely exploited and could provide novel contributions to still unexplored molecular traits underlying both the structure of food allergens and the mechanisms through which they sensitize or elicit adverse responses in human subjects, as well as improving analytical techniques for their detection. This review presents cutting-edge instrumental techniques recently applied when studying structural and functional aspects of proteins, mechanism of action and interaction between biomolecules. We also exemplify their role in the food allergy research and discuss their new possible applications in several areas of the food allergy field

    Diffusion stabilizes cavity solitons in bidirectional lasers

    Full text link
    We study the influence of field diffusion on the spatial localized structures (cavity solitons) recently predicted in bidirectional lasers. We find twofold positive role of the diffusion: 1) it increases the stability range of the individual (isolated) solitons; 2) it reduces the long-range interaction between the cavity solitons. Latter allows the independent manipulation (writing and erasing) of individual cavity solitons.Comment: submitted to Optics Expres

    Development of Potent Cellular and Humoral Immune Responses in Long-Term Hemodialysis Patients After 1273-mRNA SARS-CoV-2 Vaccination

    Get PDF
    Long-term hemodialysis (HD) patients are considered vulnerable and at high-risk of developing severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection due to their immunocompromised condition. Since COVID-19 associated mortality rates are higher in HD patients, vaccination is critical to protect them. The response towards vaccination against COVID-19 in HD patients is still uncertain and, in particular the cellular immune response is not fully understood. We monitored the humoral and cellular immune responses by analysis of the serological responses and Spike-specific cellular immunity in COVID-19-recovered and na√Įve HD patients in a longitudinal study shortly after vaccination to determine the protective effects of 1273-mRNA vaccination against SARS-CoV-2 in these high-risk patients. In na√Įve HD patients, the cellular immune response measured by IL-2 and IFN-…£ secretion needed a second vaccine dose to significantly increase, with a similar pattern for the humoral response. In contrast, COVID-19 recovered HD patients developed a potent and rapid cellular and humoral immune response after the first vaccine dose. Interestingly, when comparing COVID-19 recovered healthy volunteers (HV), previously vaccinated with BNT162b2 vaccine to HD patients vaccinated with 1273-mRNA, these exhibited a more robust immune response that is maintained longitudinally. Our results indicate that HD patients develop strong cellular and humoral immune responses to 1273-mRNA vaccination and argue in favor of personalized immune monitoring studies in HD patients, especially if COVID-19 pre-exposed, to adapt COVID-19 vaccination protocols for this immunocompromised population.Funding was obtained from Instituto de Salud Carlos III (ISCIII) RICORS program to RICORS2040 (RD21/0005/0001), FEDER funds; Acci√≥n Estrat√©gica en Salud Intramural (AESI), Instituto de Salud Carlos III, grant number AESI PI21CIII_00022 to PP and Healthstar-plus -REACT-UE Grant through Segovia Arana Research Institute Puerta de Hierro Majadahonda-IDIPHIM. JO is a member of VACCELERATE (European Corona Vaccine Trial Accelerator Platform) Network, which aims to facilitate and accelerate the design and implementation of COVID-19 phase 2 and 3 vaccine trials. JO is a member of the INsTRuCT under the MSC grant agreement N¬ļ860003 (Innovative Training in Myeloid Regulatory Cell Therapy) Consortium, a network of European scientists from academia and industry focused on developing innovative immunotherapies.S

    Differential effects of the second SARS-CoV-2 mRNA vaccine dose on T cell immunity in naive and COVID-19 recovered individuals

    Get PDF
    The rapid development of mRNA-based vaccines against the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) led to the design of accelerated vaccination schedules that have been extremely effective in naive individuals. While a two-dose immunization regimen with the BNT162b2 vaccine has been demonstrated to provide a 95% efficacy in naive individuals, the effects of the second vaccine dose in individuals who have previously recovered from natural SARS-CoV-2 infection has not been investigated in detail. In this study, we characterize SARS-CoV-2 spike-specific humoral and cellular immunity in naive and previously infected individuals during and after two doses of BNT162b2 vaccination. Our results demonstrate that, while the second dose increases both the humoral and cellular immunity in naive individuals, COVID-19 recovered individuals reach their peak of immunity after the first dose. These results suggests that a second dose, according to the current standard regimen of vaccination, may be not necessary in individuals previously infected with SARS-CoV-2.Funding: Research reported in this publication was supported in part by the National Cancer Institute of the NIH (5R01HD102614-02; R01CA249204 and R01CA248984) and an ISMMS seed fund to E.G. The authors gratefully acknowledge use of the services and facilities of the Tisch Cancer Institute supported by a NCI Cancer Center Support Grant (P30 CA196521). M.S. was supported by a NCI training grant (T32CA078207). This work was supported by an ISMMS seed fund to J.O.; Instituto de Salud Carlos III (COV20-00668) to R.C.R.; the Instituto de Salud Carlos III, Spanish Ministry of Science and Innovation (COVID-19 research call COV20/00181) co-financed by the European Development Regional Fund ‚Äė‚ÄėA way to achieve Europe‚Äô‚Äô to E.P.; the Instituto de Salud Carlos III, Spain (COV20/00170); the Government of Cantabria, Spain (2020UIC22-PUB-0019) to M.L.H.; the Instituto de Salud Carlos III (PI16CIII/00012) to P.P.; the Fondo Social Europeo e Iniciativa de Empleo Juvenil YEI (Grant PEJ2018-004557-A) to M.P.E.; and by REDInREN 016/009/009 ISCIII. This project has received funding from the European Union Horizon 2020 research and innovation programs VACCELERATE and INsTRuCT under grant agreements 101037867 and 860003

    Differential effects of the second SARS-CoV-2 mRNA vaccine dose on T cell immunity in naive and COVID-19 recovered individuals

    Get PDF
    The rapid development of mRNA-based vaccines against the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) led to the design of accelerated vaccination schedules that have been extremely effective in naive individuals. While a two-dose immunization regimen with the BNT162b2 vaccine has been demonstrated to provide a 95% efficacy in naive individuals, the effects of the second vaccine dose in individuals who have previously recovered from natural SARS-CoV-2 infection has not been investigated in detail. In this study, we characterize SARS-CoV-2 spike-specific humoral and cellular immunity in naive and previously infected individuals during and after two doses of BNT162b2 vaccination. Our results demonstrate that, while the second dose increases both the humoral and cellular immunity in naive individuals, COVID-19 recovered individuals reach their peak of immunity after the first dose. These results suggests that a second dose, according to the current standard regimen of vaccination, may be not necessary in individuals previously infected with SARS-CoV-2.Research reported in this publication was supported in part by the National Cancer Institute of the NIH (5R01HD102614-02; R01CA249204 and R01CA248984) and an ISMMS seed fund to E.G. The authors gratefully acknowledge use of the services and facilities of the Tisch Cancer Institute supported by a NCI Cancer Center Support Grant (P30 CA196521). M.S. was supported by a NCI training grant (T32CA078207). This work was supported by an ISMMS seed fund to J.O.; Instituto de Salud Carlos III (COV20-00668) to R.C.R.; the Instituto de Salud Carlos III, Spanish Ministry of Science and Innovation (COVID-19 research call COV20/00181) co-financed by the European Development Regional Fund ‚ÄúA way to achieve Europe‚ÄĚ to E.P.; the Instituto de Salud Carlos III, Spain (COV20/00170); the Government of Cantabria, Spain (2020UIC22-PUB-0019) to M.L.H.; the Instituto de Salud Carlos III (PI16CIII/00012) to P.P.; the Fondo Social Europeo e Iniciativa de Empleo Juvenil YEI (Grant PEJ2018-004557-A) to M.P.E.; and by REDInREN 016/009/009 ISCIII. This project has received funding from the European Union Horizon 2020 research and innovation programs VACCELERATE and INsTRuCT under grant agreements 101037867 and 860003.S

    Differential cross section measurements for the production of a W boson in association with jets in proton‚Äďproton collisions at ‚ąös = 7 TeV

    Get PDF
    Measurements are reported of differential cross sections for the production of a W boson, which decays into a muon and a neutrino, in association with jets, as a function of several variables, including the transverse momenta (pT) and pseudorapidities of the four leading jets, the scalar sum of jet transverse momenta (HT), and the difference in azimuthal angle between the directions of each jet and the muon. The data sample of pp collisions at a centre-of-mass energy of 7 TeV was collected with the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 fb[superscript ‚ąí1]. The measured cross sections are compared to predictions from Monte Carlo generators, MadGraph + pythia and sherpa, and to next-to-leading-order calculations from BlackHat + sherpa. The differential cross sections are found to be in agreement with the predictions, apart from the pT distributions of the leading jets at high pT values, the distributions of the HT at high-HT and low jet multiplicity, and the distribution of the difference in azimuthal angle between the leading jet and the muon at low values.United States. Dept. of EnergyNational Science Foundation (U.S.)Alfred P. Sloan Foundatio

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an