7 research outputs found

    Physico-chemical properties of oil from some selected underutilized oil seeds available for biodiesel preparation

    Get PDF
    In the past few decades, there has been increasing demand for reduction on the reliance on fossil fuels. As a result, there is an increasing search for renewable resources for biodiesel production. In this study, the  feasibility of using some selected tropical seeds: palm kernel, breadfruit, groundnut, bambara groundnut,  pumpkin, African oil bean, melon, sesame, coconut, soybean, Cucumeropsis manii, and Dacryodes edulis as sources of biodiesel production were investigated. These results suggest that these seeds (with the exception of breadfruit, African oil bean, coconut and dacryodes edulis), could be used as sources of biodiesel production, going by their yield. Physico-chemical analysis revealed that tested parameters were within the American Society for Testing and Materials (ASTM) standard specifications for biodiesel production. In actual fact, the iodine values of palm kernel, groundnut, bambara groundnut, pumpkin, African oil bean and sesame, show that they could be used as lubricants and hydraulic brake fluid.Key words: Oil seeds, biodiesel, properties, extraction

    Physicochemical characterization of Quassia undulata seed oil for biodiesel production

    Get PDF
    In many parts of the world, there is a surplus of traditional crops and a continuous search for break and new crops, including some which produce useful oils. Quassia undulata seed oil is such an attractive resource. This present research was carried out to assess the physicochemical properties of the oil from Q. undulata seeds extracted using normal-hexane as solvent. Q. undulata seeds had a high yield comparable to those of palm fruit and cotton seed. The physicochemical characterization indicated specific gravity (1.099), iodine value (132.78), acid value (3.759) and peroxide value (6.756). The values obtained from Q. undulata were uniquely different from common vegetable oils but with a superior combination of properties to suit a promising industrial process such as biodiesel production.Keywords: Quassia undulata, physicochemical properties, vegetable oil, biodiesel productio

    Biobleaching of Industrial Important Dyes with Peroxidase Partially Purified from Garlic

    Get PDF
    An acidic peroxidase was extracted from garlic (Allium sativum) and was partially purified threefold by ammonium sulphate precipitation, dialysis, and gel filtration chromatography using sephadex G-200. The specific activity of the enzyme increased from 4.89 U/mg after ammonium sulphate precipitation to 25.26 U/mg after gel filtration chromatography. The optimum temperature and pH of the enzyme were 50°C and 5.0, respectively. The Km and Vmax for H2O2 and o-dianisidine were 0.026 mM and 0.8 U/min, and 25 mM and 0.75 U/min, respectively. Peroxidase from garlic was effective in decolourizing Vat Yellow 2, Vat Orange 11, and Vat Black 27 better than Vat Green 9 dye. For all the parameters monitored, the decolourization was more effective at a pH range, temperature, H2O2 concentration, and enzyme concentration of 4.5–5.0, 50°C, 0.6 mM, and 0.20 U/mL, respectively. The observed properties of the enzyme together with its low cost of extraction (from local sources) show the potential of this enzyme for practical application in industrial wastewater treatment especially with hydrogen peroxide. These Vat dyes also exhibited potentials of acting as peroxidase inhibitors at alkaline pH range

    Bioinformatic characterization of a triacylglycerol lipase produced by Aspergillus flavus isolated from the decaying seed of Cucumeropsis mannii

    Get PDF
    Lipases are enzymes of industrial importance responsible for the hydrolysis of ester bonds of triglycerides. A lipolytic fungus was isolated and subsequently identified based on the ITS sequence analysis as putative Aspergillus flavus with accession number LC424503. The gene coding for extracellular triacylglycerol lipase was isolated from Aspergillus flavus species, sequenced, and characterised using bioinformatics tools. An open reading frame of 420 amino acid sequence was obtained and designated as Aspergillus flavus lipase (AFL) sequence. Alignment of the amino acid sequence with other lipases revealed the presence GHSLG sequence which is the lipase consensus sequence Gly-X1-Ser-X2-Gly indicating that it a classical lipase. A catalytic active site lid domain composed of TYITDTIIDLS amino acids sequence was also revealed. This lid protects the active site, control the catalytic activity and substrate selectivity in lipases. The 3-Dimensional structural model shared 34.08% sequence identity with a lipase from Yarrowia lipolytica covering 272 amino acid residues of the template model. A search of the lipase engineering database using AFL sequence revealed that it belongs to the class GX-lipase, superfamily abH23 and homologous family abH23.02, molecular weight and isoelectric point values of 46.95 KDa and 5.7, respectively. N-glycosylation sites were predicted at residues 164, 236 and 333, with potentials of 0.7250, 0.7037 and 0.7048, respectively. O-glycosylation sites were predicted at residues 355, 358, 360 and 366. A signal sequence of 37 amino acids was revealed at the N-terminal of the polypeptide. This is a short peptide sequence that marks a protein for transport across the cell membrane and indicates that AFL is an extracellular lipase. The findings on the structural and molecular properties of Aspergillus flavus lipase in this work will be crucial in future studies aiming at engineering the enzyme for biotechnology applications

    Partial Purification and Characterisation of Alcohol Dehydrogenase from <i>Acetobacter aceti</i> Isolated from Palm Wine

    No full text
    Palm wine is a very important alcoholic beverage whose consumption is limited because it spoils easily. The study was designed to isolate Acetobacter aceti from palm wine, then extract, purify and characterize alcohol dehydrogenase (AD) from the A. aceti. Muller Hilton agar was used as medium for the growth of A. aceti for 48 h. The cells were harvested and subjected to ultrasonication using 500 watt ultrasonicator. Enzyme assay was carried out in both the supernatant and pellet. The enzyme was precipitated by polyethelene glycol 6000 while gel filtration was used for purifying the enzyme. The effects of pH, temperature and substrate concentration on AD were evaluated. The isolated A. aceti was gram negative, rod shaped, catalase positive, oxidase negative and was able to oxidize acetic acid to CO2 and H2O. Triton X-100 (0.3%) was the most effective concentration in solubilizing the protein (AD), while 15% polyethelene glycol 6000 was the most effective concentration for the precipitation of AD. An optimal pH of 5 was obtained with an optimal temperature of 50 °C. The most appropriate to solubilize and precipitate AD were 0.3% triton X-100 and 15% polyethelene glycol 6000 respectively, while AD activity was reduced under acidic pH, as well as for low and high temperatures

    Biodiesel potential of Cucumeropsis mannii (white melon) seed oil: A neglected and underutilized resource in Nigeria

    Get PDF
    A major challenge in the biodiesel industry is the availability of high-quality vegetable oil feedstocks. Thus, there is a continuous search for quality biodiesel feedstock whose production will trigger economic impact on the agricultural sector, minimize land degradation and without significant disruption to the food chain. In this work, we extracted and analysed oil from neglected and underutilized Cucumeropsis mannii seeds for their potential in biodiesel production. The oil content of C. mannii seed was 40.8 ± 0.56%. GC-MS analysis of the oil revealed the presence of 47.0% saturated fatty (predominantly palmitic acid, stearic acid) and 53.0% of unsaturated fatty acids (predominantly oleic, linoleic and erucic acids). The physicochemical properties were determined and values were as follows: iodine value (111.07 ± 0.15 g/100 g), saponification value (192.03 ± 0.37 mg/kg of oil), peroxide value (2.60 ± 0.10 meq/kg), acid value (4.20 ± 0.02 mgKOH/g) free fatty acid (2.51 ± 0.02%), relative density (0.93 ± 0.02), the refractive index at 28 °C (1.46 ± 0.04) and viscosity at 30 °C (3.00 ± 0.10 mm2/s). The fuel properties namely, cloud point, pour point, flash point and caloric value were determined and the values were 3.03 ± 0.11 °C, 1.00 ± 0.10 °C, 279.04 ± 0.99 °C and 31.10 ± 0.11 MJ/kg, respectively. In addition, the protein content of the defatted seed was found to be 47.4 ± 0.61 g/100 g. The defatted protein-rich cakes can be upgraded as a food additive; thus the C. mannii seed oil can serve as biodiesel feedstock without altering the food chain. These characteristics demonstrate the potential of C. mannii oil as a high-quality feedstock for biodiesel production. We envisage that its utilization as biodiesel feedstock will improve the market value of these seeds, thus supporting the economic development of local farmers in rural areas
    corecore