1,961 research outputs found

    ATLAS Monitored Drift Tube Chambers in E = 11 MeV Neutron Background

    Get PDF
    The influence of fast neutrons on the occupancy and the single tube resolution of ATLAS muon drift detectors was investigated by exposing a chamber built out of 3 layers of 3 short standard drift tubes to neutron flux-densities of up to 16 kHz/cm2 at a neutron energy of E=11 MeV. Pulse shape capable NE213 scintillaton detectors and a calibrated BF3 neutron detector provided monitoring of the neutron flux-density and energy. The sensitivity of the drift chamber to the neutrons was measured to be 4*10-4 by comparing data sets with and without neutron background. For the investigation of tracks of cosmic muons two silicon-strip detectors above and underneath the chamber allow to compare measured drift-radii with reference tracks. Alternatively, the single tube resolution was determined using the triple-sum method. The comparison between data with and without neutron irradiation shows only a marginal effect on the resolution and little influence on the muon track reconstruction.Comment: 4 pages, 11 figures, conferenc

    A Cosmic Ray Measurement Facility for ATLAS Muon Chambers

    Full text link
    Monitored Drift Tube (MDT) chambers will constitute the large majority of precision detectors in the Muon Spectrometer of the ATLAS experiment at the Large Hadron Collider at CERN. For commissioning and calibration of MDT chambers, a Cosmic Ray Measurement Facility is in operation at Munich University. The objectives of this facility are to test the chambers and on-chamber electronics, to map the positions of the anode wires within the chambers with the precision needed for standalone muon momentum measurement in ATLAS, and to gain experience in the operation of the chambers and on-line calibration procedures. Until the start of muon chamber installation in ATLAS, 88 chambers built at the Max Planck Institute for Physics in Munich have to be commissioned and calibrated. With a data taking period of one day individual wire positions can be measured with an accuracy of 8.3 micrometers in the chamber plane and 27 micrometers in the direction perpendicular to that plane.Comment: 14+1 pages, 11 figures, contributed paper to the EPS2003 conference, Aache

    Evidence for Z(c)(+/-)(3900) in semi-inclusive decays of b-flavored hadrons

    Get PDF
    We present evidence for the exotic charged charmoniumlike state Z(c)(+/-)(3900) decaying to J/psi pi(+/-) in semi-inclusive weak decays of b-flavored hadrons. The signal is correlated with a parent J/psi pi(+)pi(-) system in the invariant-mass range 4.2-4.7 GeV that would include the exotic structure Y(4260). The study is based on 10.4 fb(-1) of p (p) over bar collision data collected by the D0 experiment at the Fermilab Tevatron collider

    Dirac Neutrino Dark Matter

    Full text link
    We investigate the possibility that dark matter is made of heavy Dirac neutrinos with mass in the range [O(1) GeV- a few TeV] and with suppressed but non-zero coupling to the Standard Model Z as well as a coupling to an additional Z' gauge boson. The first part of this paper provides a model-independent analysis for the relic density and direct detection in terms of four main parameters: the mass, the couplings to the Z, to the Z' and to the Higgs. These WIMP candidates arise naturally as Kaluza-Klein states in extra-dimensional models with extended electroweak gauge group SU(2)_L* SU(2)_R * U(1). They can be stable because of Kaluza-Klein parity or of other discrete symmetries related to baryon number for instance, or even, in the low mass and low coupling limits, just because of a phase-space-suppressed decay width. An interesting aspect of warped models is that the extra Z' typically couples only to the third generation, thus avoiding the usual experimental constraints. In the second part of the paper, we illustrate the situation in details in a warped GUT model.Comment: 35 pages, 25 figures; v2: JCAP version; presentation and plots improved, results unchange

    Cosmic ray tests of the D0 preshower detector

    Full text link
    The D0 preshower detector consists of scintillator strips with embedded wavelength-shifting fibers, and a readout using Visible Light Photon Counters. The response to minimum ionizing particles has been tested with cosmic ray muons. We report results on the gain calibration and light-yield distributions. The spatial resolution is investigated taking into account the light sharing between strips, the effects of multiple scattering and various systematic uncertainties. The detection efficiency and noise contamination are also investigated.Comment: 27 pages, 24 figures, submitted to NIM

    Search for Kaluza-Klein Graviton Emission in ppˉp\bar{p} Collisions at s=1.8\sqrt{s}=1.8 TeV using the Missing Energy Signature

    Get PDF
    We report on a search for direct Kaluza-Klein graviton production in a data sample of 84 pbÔłĺ1{pb}^{-1} of \ppb collisions at s\sqrt{s} = 1.8 TeV, recorded by the Collider Detector at Fermilab. We investigate the final state of large missing transverse energy and one or two high energy jets. We compare the data with the predictions from a 3+1+n3+1+n-dimensional Kaluza-Klein scenario in which gravity becomes strong at the TeV scale. At 95% confidence level (C.L.) for nn=2, 4, and 6 we exclude an effective Planck scale below 1.0, 0.77, and 0.71 TeV, respectively.Comment: Submitted to PRL, 7 pages 4 figures/Revision includes 5 figure

    Measurement of the average time-integrated mixing probability of b-flavored hadrons produced at the Tevatron

    Get PDF
    We have measured the number of like-sign (LS) and opposite-sign (OS) lepton pairs arising from double semileptonic decays of bb and b╦ë\bar{b}-hadrons, pair-produced at the Fermilab Tevatron collider. The data samples were collected with the Collider Detector at Fermilab (CDF) during the 1992-1995 collider run by triggering on the existence of ╬╝╬╝\mu \mu and e╬╝e \mu candidates in an event. The observed ratio of LS to OS dileptons leads to a measurement of the average time-integrated mixing probability of all produced bb-flavored hadrons which decay weakly, ¤ç╦ë=0.152┬▒0.007\bar{\chi} = 0.152 \pm 0.007 (stat.) ┬▒0.011\pm 0.011 (syst.), that is significantly larger than the world average ¤ç╦ë=0.118┬▒0.005\bar{\chi} = 0.118 \pm 0.005.Comment: 47 pages, 10 figures, 15 tables Submitted to Phys. Rev.

    Deep-Inelastic Inclusive ep Scattering at Low x and a Determination of alpha_s

    Get PDF
    A precise measurement of the inclusive deep-inelastic e^+p scattering cross section is reported in the kinematic range 1.5<= Q^2 <=150 GeV^2 and 3*10^(-5)<= x <=0.2. The data were recorded with the H1 detector at HERA in 1996 and 1997, and correspond to an integrated luminosity of 20 pb^(-1). The double differential cross section, from which the proton structure function F_2(x,Q^2) and the longitudinal structure function F_L(x,Q^2) are extracted, is measured with typically 1% statistical and 3% systematic uncertainties. The measured partial derivative (dF_2(x,Q^2)/dln Q^2)_x is observed to rise continuously towards small x for fixed Q^2. The cross section data are combined with published H1 measurements at high Q^2 for a next-to-leading order DGLAP QCD analysis.The H1 data determine the gluon momentum distribution in the range 3*10^(-4)<= x <=0.1 to within an experimental accuracy of about 3% for Q^2 =20 GeV^2. A fit of the H1 measurements and the mu p data of the BCDMS collaboration allows the strong coupling constant alpha_s and the gluon distribution to be simultaneously determined. A value of alpha _s(M_Z^2)=0.1150+-0.0017 (exp) +0.0009-0.0005 (model) is obtained in NLO, with an additional theoretical uncertainty of about +-0.005, mainly due to the uncertainty of the renormalisation scale.Comment: 68 pages, 24 figures and 18 table
    • ÔÇŽ
    corecore