186 research outputs found

    First survey of centimeter-scale AC-LGAD strip sensors with a 120 GeV proton beam

    Full text link
    We present the first beam test results with centimeter-scale AC-LGAD strip sensors, using the Fermilab Test Beam Facility and sensors manufactured by the Brookhaven National Laboratory. Sensors of this type are envisioned for applications that require large-area precision 4D tracking coverage with economical channel counts, including timing layers for the Electron Ion Collider (EIC), and space-based particle experiments. A survey of sensor designs is presented, with the aim of optimizing the electrode geometry for spatial resolution and timing performance. Several design considerations are discussed towards maintaining desirable signal characteristics with increasingly larger electrodes. The resolutions obtained with several prototypes are presented, reaching simultaneous 18 micron and 32 ps resolutions from strips of 1 cm length and 500 micron pitch. With only slight modifications, these sensors would be ideal candidates for a 4D timing layer at the EIC

    Measurement of the double-differential inclusive jet cross section in proton-proton collisions at s\sqrt{s} = 5.02 TeV

    No full text
    International audienceThe inclusive jet cross section is measured as a function of jet transverse momentum pTp_\mathrm{T} and rapidity yy. The measurement is performed using proton-proton collision data at s\sqrt{s} = 5.02 TeV, recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 27.4 pb‚ąí1^{-1}. The jets are reconstructed with the anti-kTk_\mathrm{T} algorithm using a distance parameter of RR = 0.4, within the rapidity interval ‚ą£y‚ą£\lvert y\rvert<\lt 2, and across the kinematic range 0.06 <\ltpTp_\mathrm{T}<\lt 1 TeV. The jet cross section is unfolded from detector to particle level using the determined jet response and resolution. The results are compared to predictions of perturbative quantum chromodynamics, calculated at both next-to-leading order and next-to-next-to-leading order. The predictions are corrected for nonperturbative effects, and presented for a variety of parton distribution functions and choices of the renormalization/factorization scales and the strong coupling őĪS\alpha_\mathrm{S}

    Development of the CMS detector for the CERN LHC Run 3