153 research outputs found

    Virchow-Robin space and aquaporin-4: new insights on an old friend

    Get PDF
    Recent studies have strongly indicated that the classic circulation model of cerebrospinal fluid (CSF) is no longer valid. The production of CSF is not only dependent on the choroid plexus but also on water flux in the peri-capillary (Virchow Robin) space. Historically, CSF flow through the Virchow Robin space is known as interstitial flow, the physiological significance of which is now fully understood. This article briefly reviews the modern concept of CSF physiology and the Virchow-Robin space, in particular its functionalities critical for central nervous system neural activities. Water influx into the Virchow Robin space and, hence, interstitial flow is regulated by aquaporin-4 (AQP-4) localized in the endfeet of astrocytes, connecting the intracellular cytosolic fluid space of astrocytes and the Virchow Robin space. Interstitial flow has a functionality equivalent to systemic lymphatics, on which clearance of β-amyloid is strongly dependent. Autoregulation of brain blood flow serves to maintain a constant inner capillary fluid pressure, allowing fluid pressure of the Virchow Robin space to regulate regional cerebral blood flow (rCBF) based on AQP-4 gating. Excess heat produced by neural activities is effectively removed from the area of activation by increased rCBF by closing AQP-4 channels. This neural flow coupling (NFC) is likely mediated by heat generated proton channels

    Aquaporin-4 Functionality and Virchow-Robin Space Water Dynamics: Physiological Model for Neurovascular Coupling and Glymphatic Flow.

    Get PDF
    The unique properties of brain capillary endothelium, critical in maintaining the blood-brain barrier (BBB) and restricting water permeability across the BBB, have important consequences on fluid hydrodynamics inside the BBB hereto inadequately recognized. Recent studies indicate that the mechanisms underlying brain water dynamics are distinct from systemic tissue water dynamics. Hydrostatic pressure created by the systolic force of the heart, essential for interstitial circulation and lymphatic flow in systemic circulation, is effectively impeded from propagating into the interstitial fluid inside the BBB by the tightly sealed endothelium of brain capillaries. Instead, fluid dynamics inside the BBB is realized by aquaporin-4 (AQP-4), the water channel that connects astrocyte cytoplasm and extracellular (interstitial) fluid. Brain interstitial fluid dynamics, and therefore AQP-4, are now recognized as essential for two unique functions, namely, neurovascular coupling and glymphatic flow, the brain equivalent of systemic lymphatics

    Fundamentals of Human Brain Function

    Get PDF

    Takifugu obscurus is a euryhaline fugu species very close to Takifugu rubripes and suitable for studying osmoregulation

    Get PDF
    BACKGROUND: The genome sequence of the pufferfish Takifugu rubripes is an enormously useful tool in the molecular physiology of fish. Euryhaline fish that can survive both in freshwater (FW) and seawater (SW) are also very useful for studying fish physiology, especially osmoregulation. Recently we learned that there is a pufferfish, Takifugu obscurus, common name "mefugu" that migrates into FW to spawn. If T. obscurus is indeed a euryhaline fish and shares a high sequence homology with T. rubripes, it will become a superior animal model for studying the mechanism of osmoregulation. We have therefore determined its euryhalinity and phylogenetic relationship to the members of the Takifugu family. RESULTS: The following six Takifugu species were used for the analyses: T. obscurus, T. rubripes, T. niphobles, T. pardalis, T. poecilonotus, and T. porphyreus. When transferred to FW, only T. obscurus could survive while the others could not survive more than ten days in FW. During this course of FW adaptation, serum Na(+ )concentration of T. obscurus decreased only slightly, but a rapid and large decrease occurred even in the case of T. niphobles, a peripheral fresh water species that is often seen in brackish river mouths. Phylogenetic analysis using nucleotide sequences of the mitochondrial 16S ribosomal RNA gene of each species indicated that the six Takifugu species are very closely related with each other. CONCLUSION: T. obscurus is capable of adapting to both FW and SW. Its genomic sequence shares a very high homology with those of the other Takifugu species such that the existing Takifugu genomic information resources can be utilized. These properties make "mefugu", which has drawn little attention from animal physiologists until this study, a useful model animal for studying the molecular mechanism of maintaining body fluid homeostasis

    Selective alpha(1A)-Adrenoceptor Stimulation Induces Mueller's Smooth Muscle Contraction in an Isolated Canine Upper Eyelid Preparation

    Get PDF
    Purpose: It has been demonstrated that in patients with aponeurotic blepharoptosis, alpha(1)-adrenoceptor stimulation causes the contraction of the upper eyelid tarsal smooth muscle (Mueller's muscle) and opening of the eye. However, alpha(1)-adrenoceptor subtypes mediating the contraction of Mueller's muscle are still unclear. This study was designed to identify the alpha(1)-adrenoceptor subtypes in Mueller's muscle. Materials and Methods: A newly developed canine upper eyelid preparation was retrogradely perfused with a drug-containing Krebs-Henseleit solution through the angular vein in a temperature-controlled organ chamber. The contraction of the preparation was measured with a force-displacement transducer. Results: Phenylephrine, an alpha(1)-adrenoceptor agonist, increased the upper eyelid contractile force in a dose-dependent manner (K(0.5) = 110 nmol). Interestingly, the contraction in response to phenylephrine was persistent and hardly recovered to a base line level for more than 100 min after washout of the drug. WB4101 (100 nM), an alpha(1A)- and alpha(1D)-adrenoceptor antagonist, but not BMY7378 (100 nM), a selective alpha(1D)-adrenoceptor antagonist, competitively inhibited the phenylephrine-induced contraction. ABT-866, a selective alpha(1A)-adrenoceptor agonist, increased the upper eyelid contractile force as effectively as phenylephrine in a dose-dependent manner (K(0.5) = 190 nmol), and the contraction continued again for more than 100 min. Conclusion: These results suggest that selective alpha(1A)-adrenoceptor agonists, such as ABT-866, induce the sustained Mueller's muscle contraction and may be useful in pharmacological treatment of blepharoptosis.ArticleCURRENT EYE RESEARCH. 35(5):363-369 (2010)journal articl

    β(2)-Adrenergic and M(2)-muscarinic receptors decrease basal t-tubular L-type Ca2+ channel activity and suppress ventricular contractility in heart failure

    Get PDF
    L-Lype Ca2+ channels (LTCC) play a crucial role in cardiac excitation-contraction coupling. We previously found that in failing ventricular myocytes of mice chronically treated with isoproterenol, basal t-tubular (TT) LTCC activity was halved by activation of protein phosphatase (PP)2A whereas basal surface sarcolemmal (SS) LTCC activity was doubled by inhibition of PP1. Interestingly, chronic treatment of these mice with pertussis toxin almost completely normalized TT and SS LTCC densities and cardiac contractility. In the present study, we therefore sought to identify the G(i/o) protein coupled receptors in cardiac myocytes (i.e. beta(2)-adrenergic, M-2-muscarinic and A(1)-adenosine receptors) that are responsible for these abnormalities in heart failure by chronically administrating mice a selective antagonist of each receptor (ICI118,551, atropine and 8-cyclopentyl-1,3-dipropilxanthine (DPCPX), respectively) with isoproterenol. Compared with mice treated with isoproterenol alone, mice treated with isoproterenol plus ICI118,551 or atropine, but not DPCPX showed significantly lower lung weight/tibial length, higher fractional shortening, lower left ventricular end-diastolic pressure and higher dP/dt(max) and dP/dt(min). In addition, ventricular myocytes of mice treated with isoproterenol plus ICI118,551 or atropine, but not DPCPX exhibited significantly higher TT and lower SS LTCC current densities than those of mice treated with isoproterenol alone due to normalization of the PP activities. These results indicate that beta(2)-adrenergic, M-2-muscarinic, but not A(1)-adenosine receptors contribute to reduced ventricular contractility at least partially by decreasing basal TT LTCC activity in heart failure. Therefore, antagonists of beta(2)-alrenergic and/or M-2-muscarinic receptors can be good adjuncts to beta(1)-adrenergic receptor antagonists in the treatment of heart failure.ArticleEUROPEAN JOURNAL OF PHARMACOLOGY. 724:122-131 (2014)journal articl

    Expression of Long-form N-Acetylglucosamine-6-O-Sulfotransferase 1 in Human High Endothelial Venules

    Get PDF
    Two members of the N-acetylglucosamine-6-O-sulfotransferase (GlcNAc6ST) family, GlcNAc6ST-1 and GlcNAc6ST-2, function in the biosynthesis of 6-sulfo sialyl Lewis X-capped glycoproteins expressed on high endothelial venules (HEVs) in secondary lymphoid organs. Thus, both enzymes play a critical role in L-selectin-expressing lymphocyte homing. Human GlcNAc6ST-1 is encoded by a 1593-bp open reading frame exhibiting two 5' in-frame methionine codons spaced 141 bp apart. Both resemble the consensus sequence for translation initiation. Thus, it has been hypothesized that both long and short forms of GlcNAc6ST-1 may be present, although endogenous expression of either form has not been confirmed in humans. Here, the authors developed an antibody recognizing amino acid residues between the first two human GlcNAc6ST-1 methionines. This antibody specifically recognizes the long form of the enzyme, a finding validated by Western blot analysis and immunofluorescence cytochemistry of HeLa cells misexpressing long and/or short forms of human GlcNAc6ST-1. Using this antibody, the authors carried out immunofluorescence histochemistry of human lymph node tissue sections and found endogenous expression of the long form of the enzyme in human tissue, predominantly in the trans-Golgi network of endothelial cells that form HEVs. (J Histochem Cytochem 60:397-407, 2012)ArticleJOURNAL OF HISTOCHEMISTRY & CYTOCHEMISTRY. 60(5):397-407 (2012)journal articl

    The proximal C-terminus of alpha(1C) subunits is necessary for junctional membrane targeting of cardiac L-type calcium channels

    Get PDF
    In cardiac myocytes, LTCCs (L-type calcium channels) form a functional signalling complex with ryanodine receptors at the JM (junctional membrane). Although the specific localization of LTCCs to the JM is critical for excitation-contraction coupling. their targeting mechanism is unclear. Transient transfection of GFP (green fluorescent protein)-alpha(1S) or GFP-alpha(1C) but not P/Q-type calcium channel alpha(1A), in dysgenic (alpha(1S)-null) GLT myotubes results in correct targeting of these LTCCs to the JMs and restoration of action-potential-induced Ca2+ transients. To identify the sequences of alpha(1C) responsible for JM targeting, we generated a range of alpha(1C)-alpha(1A) chimaeras, deletion mutants and alanine substitution mutants and studied their targeting properties in GLT myotubes. The results revealed that amino acids L-1681 QAGLRTL(1688) and P(1693)EIRRAIS(1700), predicted to form two adjacent alpha-helices in the proximal C-terminus, are necessary for the JM targeting of alpha(1C). The efficiency of restoration of action-potential-induced Ca2+ transients in GLT myotubes was significantly decreased by mutations in the targeting motif. JM targeting was not disrupted by the distal C-terminus of alpha(1C) which binds to the second alpha-helix. Therefore we have identified a new structural motif in the C-terminus of alpha(1C) that mediates the targeting of cardiac LTCCs to JMs independently of the interaction between proximal and distal C-termini of alpha(1C).ArticleBIOCHEMICAL JOURNAL. 448:221-231 (2012)journal articl

    Two mechanistically distinct effects of dihydropyridine nifedipine on Ca(V)1.2 L-type Ca2+ channels revealed by Timothy syndrome mutation

    Get PDF
    Dihydropyridine Ca2+ channel antagonists (DHPs) block Ca(V)1.2 L-type Ca2+ channels (LTCCs) by stabilizing their voltage-dependent inactivation (VDI); however, it is still not clear how DHPs allosterically interact with the kinetically distinct (fast and slow) VDI. Thus, we analyzed the effect of a prototypical DHP, nifedipine on LTCCs with or without the Timothy syndrome mutation that resides in the I-II linker (LI-II) of Ca(V)1.2 subunits and impairs VDI. Whole-cell Ba2+ currents mediated by rabbit Ca(V)1.2 with or without the Timothy mutation (G436R) (analogous to the human G406R mutation) were analyzed in the presence and absence of nifedipine. In the absence of nifedipine, the mutation significantly impaired fast closed-and open-state VDI (CSI and OSI) at -40 and 0 mV, respectively, but did not affect channels' kinetics at -100 mV. Nifedipine equipotently blocked these channels at -80 mV. In wild-type LTCCs, nifedipine promoted fast CSI and OSI at -40 and 0 mV and promoted or stabilized slow CSI at -40 and -100 mV, respectively. In LTCCs with the mutation, nifedipine resumed the impaired fast CSI and OSI at -40 and 0 mV, respectively, and had the same effect on slow CSI as in wild-type LTCCs. Therefore, nifedipine has two mechanistically distinct effects on LTCCs: the promotion of fast CSI/OSI caused by LI-II at potentials positive to the sub-threshold potential and the promotion or stabilization of slow CSI caused by different mechanisms at potentials negative to the subthreshold potential.ArticleEUROPEAN JOURNAL OF PHARMACOLOGY. 685(1-3):15-23 (2012)journal articl
    corecore