137 research outputs found

    Casimir effect for scalar fields under Robin boundary conditions on plates

    Get PDF
    We study the Casimir effect for scalar fields with general curvature coupling subject to mixed boundary conditions (1+βmnμμ)ϕ=0(1+\beta_{m}n^{\mu}\partial_{\mu})\phi =0 at x=amx=a_{m} on one (m=1m=1) and two (m=1,2m=1,2) parallel plates at a distance aa2a1a\equiv a_{2}-a_{1} from each other. Making use of the generalized Abel-Plana formula previously established by one of the authors \cite{Sahrev}, the Casimir energy densities are obtained as functions of β1\beta_{1} and of β1\beta_{1},β2\beta_{2},aa, respectively. In the case of two parallel plates, a decomposition of the total Casimir energy into volumic and superficial contributions is provided. The possibility of finding a vanishing energy for particular parameter choices is shown, and the existence of a minimum to the surface part is also observed. We show that there is a region in the space of parameters defining the boundary conditions in which the Casimir forces are repulsive for small distances and attractive for large distances. This yields to an interesting possibility for stabilizing the distance between the plates by using the vacuum forces.Comment: 21 pages, 8 figures, consideration of the contribution from complex eigenmodes added, possibility for the stabilization of the distance between the plates is discussed; accepted for publication in J. Phys.

    Experimental and Theoretical Challenges in the Search for the Quark Gluon Plasma: The STAR Collaboration's Critical Assessment of the Evidence from RHIC Collisions

    Get PDF
    We review the most important experimental results from the first three years of nucleus-nucleus collision studies at RHIC, with emphasis on results from the STAR experiment, and we assess their interpretation and comparison to theory. The theory-experiment comparison suggests that central Au+Au collisions at RHIC produce dense, rapidly thermalizing matter characterized by: (1) initial energy densities above the critical values predicted by lattice QCD for establishment of a Quark-Gluon Plasma (QGP); (2) nearly ideal fluid flow, marked by constituent interactions of very short mean free path, established most probably at a stage preceding hadron formation; and (3) opacity to jets. Many of the observations are consistent with models incorporating QGP formation in the early collision stages, and have not found ready explanation in a hadronic framework. However, the measurements themselves do not yet establish unequivocal evidence for a transition to this new form of matter. The theoretical treatment of the collision evolution, despite impressive successes, invokes a suite of distinct models, degrees of freedom and assumptions of as yet unknown quantitative consequence. We pose a set of important open questions, and suggest additional measurements, at least some of which should be addressed in order to establish a compelling basis to conclude definitively that thermalized, deconfined quark-gluon matter has been produced at RHIC.Comment: 101 pages, 37 figures; revised version to Nucl. Phys.

    Implementing The Prison Rape Elimination Act: A Toolkit for Jails

    Get PDF
    Minor edits. “The goal of this Toolkit is to provide jails of all sizes, political divisions, and geographic locations with a step-by-step guide for preventing, detecting, and eliminating sexual abuse of inmates in their custody – and for responding effectively to abuse when it occurs. Prison rape includes all forms of inmate sexual abuse within a correctional facility, including state and federal prisons, county and municipal jails, police lock-ups, holding facilities, inmate transportation vehicles, juvenile detention facilities, and community corrections facilities. Protecting arrestees, detainees, and inmates from sexual violence is part of a jail’s core mission. This toolkit will help assess your jail’s operations with an eye to improvements.” The Toolkit is divided into folders holding materials related to: introductory information about PREA [Prison Rape Elimination Act] and it Standards; a Self-Assessment Checklist with supporting forms “to provide a step-by-step process for jails to review and assess policies, procedures, and practices in light of the PREA Standards and accepted best practices”; and additional resources to assist you in PREA-readiness

    Endovascular strategy or open repair for ruptured abdominal aortic aneurysm: one-year outcomes from the IMPROVE randomized trial.

    Get PDF
    AIMS: To report the longer term outcomes following either a strategy of endovascular repair first or open repair of ruptured abdominal aortic aneurysm, which are necessary for both patient and clinical decision-making. METHODS AND RESULTS: This pragmatic multicentre (29 UK and 1 Canada) trial randomized 613 patients with a clinical diagnosis of ruptured aneurysm; 316 to an endovascular first strategy (if aortic morphology is suitable, open repair if not) and 297 to open repair. The principal 1-year outcome was mortality; secondary outcomes were re-interventions, hospital discharge, health-related quality-of-life (QoL) (EQ-5D), costs, Quality-Adjusted-Life-Years (QALYs), and cost-effectiveness [incremental net benefit (INB)]. At 1 year, all-cause mortality was 41.1% for the endovascular strategy group and 45.1% for the open repair group, odds ratio 0.85 [95% confidence interval (CI) 0.62, 1.17], P = 0.325, with similar re-intervention rates in each group. The endovascular strategy group and open repair groups had average total hospital stays of 17 and 26 days, respectively, P < 0.001. Patients surviving rupture had higher average EQ-5D utility scores in the endovascular strategy vs. open repair groups, mean differences 0.087 (95% CI 0.017, 0.158), 0.068 (95% CI -0.004, 0.140) at 3 and 12 months, respectively. There were indications that QALYs were higher and costs lower for the endovascular first strategy, combining to give an INB of £3877 (95% CI £253, £7408) or €4356 (95% CI €284, €8323). CONCLUSION: An endovascular first strategy for management of ruptured aneurysms does not offer a survival benefit over 1 year but offers patients faster discharge with better QoL and is cost-effective. CLINICAL TRIAL REGISTRATION: ISRCTN 48334791

    Impact of Aspergillus fumigatus in allergic airway diseases

    Get PDF
    For decades, fungi have been recognized as associated with asthma and other reactive airway diseases. In contrast to type I-mediated allergies caused by pollen, fungi cause a large number of allergic diseases such as allergic bronchopulmonary mycoses, rhinitis, allergic sinusitis and hypersensitivity pneumonitis. Amongst the fungi, Aspergillus fumigatus is the most prevalent cause of severe pulmonary allergic disease, including allergic bronchopulmonary aspergillosis (ABPA), known to be associated with chronic lung injury and deterioration in pulmonary function in people with chronic asthma and cystic fibrosis (CF). The goal of this review is to discuss new understandings of host-pathogen interactions in the genesis of allergic airway diseases caused by A. fumigatus. Host and pathogen related factors that participate in triggering the inflammatory cycle leading to pulmonary exacerbations in ABPA are discussed

    Bio-analytical Assay Methods used in Therapeutic Drug Monitoring of Antiretroviral Drugs-A Review

    Get PDF

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    The impact of immediate breast reconstruction on the time to delivery of adjuvant therapy: the iBRA-2 study