267 research outputs found

    Explainable Software Bot Contributions: Case Study of Automated Bug Fixes

    Full text link
    In a software project, esp. in open-source, a contribution is a valuable piece of work made to the project: writing code, reporting bugs, translating, improving documentation, creating graphics, etc. We are now at the beginning of an exciting era where software bots will make contributions that are of similar nature than those by humans. Dry contributions, with no explanation, are often ignored or rejected, because the contribution is not understandable per se, because they are not put into a larger context, because they are not grounded on idioms shared by the core community of developers. We have been operating a program repair bot called Repairnator for 2 years and noticed the problem of "dry patches": a patch that does not say which bug it fixes, or that does not explain the effects of the patch on the system. We envision program repair systems that produce an "explainable bug fix": an integrated package of at least 1) a patch, 2) its explanation in natural or controlled language, and 3) a highlight of the behavioral difference with examples. In this paper, we generalize and suggest that software bot contributions must explainable, that they must be put into the context of the global software development conversation

    Automatic Software Repair: a Bibliography

    Get PDF
    This article presents a survey on automatic software repair. Automatic software repair consists of automatically finding a solution to software bugs without human intervention. This article considers all kinds of repairs. First, it discusses behavioral repair where test suites, contracts, models, and crashing inputs are taken as oracle. Second, it discusses state repair, also known as runtime repair or runtime recovery, with techniques such as checkpoint and restart, reconfiguration, and invariant restoration. The uniqueness of this article is that it spans the research communities that contribute to this body of knowledge: software engineering, dependability, operating systems, programming languages, and security. It provides a novel and structured overview of the diversity of bug oracles and repair operators used in the literature

    Software that Learns from its Own Failures

    Full text link
    All non-trivial software systems suffer from unanticipated production failures. However, those systems are passive with respect to failures and do not take advantage of them in order to improve their future behavior: they simply wait for them to happen and trigger hard-coded failure recovery strategies. Instead, I propose a new paradigm in which software systems learn from their own failures. By using an advanced monitoring system they have a constant awareness of their own state and health. They are designed in order to automatically explore alternative recovery strategies inferred from past successful and failed executions. Their recovery capabilities are assessed by self-injection of controlled failures; this process produces knowledge in prevision of future unanticipated failures

    Coming: a Tool for Mining Change Pattern Instances from Git Commits

    Full text link
    Software repositories such as Git have become a relevant source of information for software engineer researcher. For instance, the detection of Commits that fulfill a given criterion (e.g., bugfixing commits) is one of the most frequent tasks done to understand the software evolution. However, to our knowledge, there is not open-source tools that, given a Git repository, returns all the instances of a given change pattern. In this paper we present Coming, a tool that takes an input a Git repository and mines instances of change patterns on each commit. For that, Coming computes fine-grained changes between two consecutive revisions, analyzes those changes to detect if they correspond to an instance of a change pattern (specified by the user using XML), and finally, after analyzing all the commits, it presents a) the frequency of code changes and b) the instances found on each commit. We evaluate Coming on a set of 28 pairs of revisions from Defects4J, finding instances of change patterns that involve If conditions on 26 of them

    Towards Ecology Inspired Software Engineering

    Get PDF
    Ecosystems are complex and dynamic systems. Over billions of years, they have developed advanced capabilities to provide stable functions, despite changes in their environment. In this paper, we argue that the laws of organization and development of ecosystems provide a solid and rich source of inspiration to lay the foundations for novel software construction paradigms that provide stability as much as openness.Comment: No. RR-7952 (2012
    • …
    corecore