18 research outputs found

    Measuring Electron Diffusion and Constraining the Neutral Current π0 Background for Single-Photon Events in MicroBooNE

    Get PDF
    Liquid Argon Time Projection Chambers (LArTPCs) are a rising technology in the field of experimental neutrino physics. LArTPCs use ionization electrons and scintillation light to reconstruct neutrino interactions with exceptional calorimetric and position resolution capabilities. Here, I present two analyses conducted in the MicroBooNE LArTPC at Fermilab: a measurement of the longitudinal electron diffusion coefficient, DL, in the MicroBooNE detector and a constraint of the systematic uncertainty on MicroBooNE\u27s single-photon analysis due to the dominant neutral current (NC) π0 background. Longitudinal electron diffusion modifies the spatial and timing resolution of the detector, and measuring it will help correct for these effects. Furthermore, current measurements of DL in liquid argon are sparse and in tension with one another, making the MicroBooNE measurement especially valuable. We report a measurement of DL = 3.74+0.28-0.29 cm2/s. MicroBooNE is searching for single-photon events as a potential explanation for the MiniBooNE low-energy excess (LEE) of electron neutrino-like events, which has been interpreted as evidence for low-mass sterile neutrinos. However, this search is overwhelmed by a large NC π0 background. By performing a sideband selection of NC π0 events, we apply a data-driven rate constraint to the single-photon analysis to reduce the systematic uncertainties. At present, this constraint improves the single-photon analysis\u27 median sensitivity to the LEE-like signal from 0.9σ to 1.5σ. This sensitivity is expected to improve significantly as more data become available. Both of these measurements will not only benefit MicroBooNE, but also inform future LArTPC experiments

    Multiagent Routing Problem with Dynamic Target Arrivals Solved via Approximate Dynamic Programming

    Get PDF
    This research formulates and solves the multiagent routing problem with dynamic target arrivals (MRP-DTA), a stochastic system wherein a team of autonomous unmanned aerial vehicles (AUAVs) executes a strike coordination and reconnaissance (SCAR) mission against a notional adversary. Dynamic target arrivals that occur during the mission present the team of AUAVs with a sequential decision-making process which we model via a Markov Decision Process (MDP). To combat the curse of dimensionality, we construct and implement a hybrid approximate dynamic programming (ADP) algorithmic framework that employs a parametric cost function approximation (CFA) which augments a direct lookahead (DLA) model via a parameterization to the objective function. We show a statistically significant improvement over the repeated greedy marginal heuristic benchmark policy for 19 out of 20 problem instances and a statistically significant improvement over the repeated sequential orienteering problem benchmark policy for 8 out of 10 problem instances of the MRP-DTA. Results of excursion analysis show the value trade off of balancing solution quality and computational effort when selecting the base optimization model for our CFA-DLA algorithm

    DUNE Offline Computing Conceptual Design Report

    No full text
    This document describes Offline Software and Computing for the Deep Underground Neutrino Experiment (DUNE) experiment, in particular, the conceptual design of the offline computing needed to accomplish its physics goals. Our emphasis in this document is the development of the computing infrastructure needed to acquire, catalog, reconstruct, simulate and analyze the data from the DUNE experiment and its prototypes. In this effort, we concentrate on developing the tools and systems that facilitate the development and deployment of advanced algorithms. Rather than prescribing particular algorithms, our goal is to provide resources that are flexible and accessible enough to support creative software solutions as HEP computing evolves and to provide computing that achieves the physics goals of the DUNE experiment.This document describes the conceptual design for the Offline Software and Computing for the Deep Underground Neutrino Experiment (DUNE). The goals of the experiment include 1) studying neutrino oscillations using a beam of neutrinos sent from Fermilab in Illinois to the Sanford Underground Research Facility (SURF) in Lead, South Dakota, 2) studying astrophysical neutrino sources and rare processes and 3) understanding the physics of neutrino interactions in matter. We describe the development of the computing infrastructure needed to achieve the physics goals of the experiment by storing, cataloging, reconstructing, simulating, and analyzing ∌\sim 30 PB of data/year from DUNE and its prototypes. Rather than prescribing particular algorithms, our goal is to provide resources that are flexible and accessible enough to support creative software solutions and advanced algorithms as HEP computing evolves. We describe the physics objectives, organization, use cases, and proposed technical solutions

    DUNE Offline Computing Conceptual Design Report

    No full text
    This document describes Offline Software and Computing for the Deep Underground Neutrino Experiment (DUNE) experiment, in particular, the conceptual design of the offline computing needed to accomplish its physics goals. Our emphasis in this document is the development of the computing infrastructure needed to acquire, catalog, reconstruct, simulate and analyze the data from the DUNE experiment and its prototypes. In this effort, we concentrate on developing the tools and systems thatfacilitate the development and deployment of advanced algorithms. Rather than prescribing particular algorithms, our goal is to provide resources that are flexible and accessible enough to support creative software solutions as HEP computing evolves and to provide computing that achieves the physics goals of the DUNE experiment

    The DUNE Far Detector Vertical Drift Technology, Technical Design Report

    No full text
    International audienceDUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals