271 research outputs found

    A Neuroendocrine Carcinoma of Undetermined Origin in a Dog

    Get PDF
    In this report, we describe a case of neuroendocrine carcinoma of undetermined origin in a dog. Necropsy revealed scattered small neoplastic nodules in the bilateral lungs and a small nodule in the parapancreatic lymph node. Histopathologically, both pulmonary and lymph nodal nodules showed a similar histologic pattern, with neoplastic cells being arranged in diffusely proliferating sheet-like cellular nests separated by variable amounts of fibrous septa, sometimes forming rosettes and duct-like structures. Scattered small necrotic foci and invasion to fibrous septa were typically observed. Neoplastic cells showed round to oval-shaped nuclei with prominent nucleoli and abundant eosinophilic cytoplasm that were positive for Grimelius’ silver impregnation staining and immunostaining with cytokeratin, synaptophysin, vasoactive intestinal peptide and chromogranin A, indicative of the development of a neuroendocrine carcinoma. However, judging from the distribution of tumors lacking the portion suggestive of the primary site in any organ examined, as well as no further indication of differentiation potential of neoplastic cells, this tumor has so far been diagnosed as neuroendocrine carcinoma of undetermined origin

    Accessing the purity of a single photon by the width of the Hong-Ou-Mandel interference

    Full text link
    We demonstrate a method to determine the spectral purity of single photons. The technique is based on the Hong-Ou-Mandel (HOM) interference between a single photon state and a suitably prepared coherent field. We show that the temporal width of the HOM dip is not only related to reciprocal of the spectral width but also to the underlying quantum coherence. Therefore, by measuring the width of both the HOM dip and the spectrum one can directly quantify the degree of spectral purity. The distinct advantage of our proposal is that it obviates the need for perfect mode matching, since it does not rely on the visibility of the interference. Our method is particularly useful for characterizing the purity of heralded single photon states.Comment: Extended version, 16 pages, 9 figure

    Theory of ferromagnetic (III,Mn)V semiconductors

    Get PDF
    The body of research on (III,Mn)V diluted magnetic semiconductors initiated during the 1990's has concentrated on three major fronts: i) the microscopic origins and fundamental physics of the ferromagnetism that occurs in these systems, ii) the materials science of growth and defects and iii) the development of spintronic devices with new functionalities. This article reviews the current status of the field, concentrating on the first two, more mature research directions. From the fundamental point of view, (Ga,Mn)As and several other (III,Mn)V DMSs are now regarded as textbook examples of a rare class of robust ferromagnets with dilute magnetic moments coupled by delocalized charge carriers. Both local moments and itinerant holes are provided by Mn, which makes the systems particularly favorable for realizing this unusual ordered state. Advances in growth and post-growth treatment techniques have played a central role in the field, often pushing the limits of dilute Mn moment densities and the uniformity and purity of materials far beyond those allowed by equilibrium thermodynamics. In (III,Mn)V compounds, material quality and magnetic properties are intimately connected. In the review we focus on the theoretical understanding of the origins of ferromagnetism and basic structural, magnetic, magneto-transport, and magneto-optical characteristics of simple (III,Mn)V epilayers, with the main emphasis on (Ga,Mn)As. The conclusions we arrive at are based on an extensive literature covering results of complementary ab initio and effective Hamiltonian computational techniques, and on comparisons between theory and experiment.Comment: 58 pages, 49 figures Version accepted for publication in Rev. Mod. Phys. Related webpage: http://unix12.fzu.cz/ms

    High-Pitch, Low-Voltage and Low-Iodine-Concentration CT Angiography of Aorta: Assessment of Image Quality and Radiation Dose with Iterative Reconstruction

    Get PDF
    Objective: To assess the image quality of aorta obtained by dual-source computed tomography angiography (DSCTA), performed with high pitch, low tube voltage, and low iodine concentration contrast medium (CM) with images reconstructed using iterative reconstruction (IR). Methods: One hundred patients randomly allocated to receive one of two types of CM underwent DSCTA with the electrocardiogram-triggered Flash protocol. In the low-iodine group, 50 patients received CM containing 270 mg I/mL and were scanned at low tube voltage (100 kVp). In the high-iodine CM group, 50 patients received CM containing 370 mg I/mL and were scanned at the tube voltage (120 kVp). The filtered back projection (FBP) algorithm was used for reconstruction in both groups. In addition, the IR algorithm was used in the low-iodine group. Image quality of the aorta was analyzed subjectively by a 3-point grading scale and objectively by measuring the CT attenuation in terms of the signal- and contrast-to-noise ratios (SNR and CNR, respectively). Radiation and CM doses were compared.Results: The CT attenuation, subjective image quality assessment, SNR, and CNR of various aortic regions of interest did not differ significantly between two groups. In the low-iodine group, images reconstructed by FBP and IR demonstrated significant differences in image noise, SNR, and CNR (p<0.05). The low-iodine group resulted in 34.3% less radiation (4.4 ± 0.5 mSv) than the high-iodine group (6.7 ± 0.6 mSv), and 27.3% less iodine weight (20.36 ± 2.65 g) than the high-iodine group (28 ± 1.98 g). Observers exhibited excellent agreement on the aortic image quality scores (κ = 0.904). Conclusions: CT images of aorta could be obtained within 2 s by using a DSCT Flash protocol with low tube voltage, IR, and low-iodine-concentration CM. Appropriate contrast enhancement was achieved while maintaining good image quality and decreasing the radiation and iodine doses