142 research outputs found

    Disposal of Household Wastewater in Soils of High Stone Content (1981-1983)

    Get PDF
    Four experimental filter fields were constructed with built-in monitoring equipment in Nixa soils. These soils contain many chert fragments and a fragipan about 60 cm below the soil surface. The fragipan restricts downward movement of water and is the designlimitingfeature. The four filter fields were: 1. A standard filter field, 76 cm deep. The bottom of the trench was in the fragipan. 2. A modified standard filter field, 30 cm deep. The bottom of the trench was above the fragipan. 3. A modified pressure filter field, 40 cm deep. The bottom of the trench was above the fragipan. In addition, a pressure-distribution system was used to insure uniform distribution of effluent in the trench. Inadvertently, this field was installed in a different soil, and the results cannot be compared directly with the other three. 4. Another modified pressure filter field with the bottom of the trench only 6 cm below the soil surface. Observation of these systems confirms that placing filter fields higher in the soil above the hydraulically limiting horizon results in improved hydraulic performance. The presence of the fragipan amplified the adverse effects attributable to climatic stress. The seepage beds which are higher in the soil profile are able to handle the effluent load and climate load with less danger of surfacing

    Disposal of Household Wastewater in Soils of High Stone Content (1977-1980)

    Get PDF
    Two experimental septic tank filter fields were constructed with built-in monitoring equipment in Nixa soils. These soils contain many chert fragments and a fragipan about 60 cm deep which restricts downward water movement and is the design-limiting feature. The standard filter field (76 cm deep) was built into the fragipan and the modified standard filter field (30 cm deep) was placed above it. During 30 months\u27 observation, the modified standard performed better than the standard filter field. Maximum rise of effluent in the standard and modified standard came within 11 and 19 cm of the soil surface, respectively. Performance of these systems indicates filter fields should be designed to function during climatic stresses, i.e. when the soil has a maximum hydraulic load and surfacing may occur. Filter fields should be designed to withstand a stress period of specified intensity. The filter fields in this study were observed under less than normal stress. Therefore, their long range performance is less clear. Our observations indicate that filter field performance is related more to rates of water movement than to stone content. Major influences on filter field performance are rates and directions of water movement, stress period intensity, designs, and construction techniques

    GCIP water and energy budget synthesis (WEBS)

    Get PDF
    As part of the World Climate Research Program\u27s (WCRPs) Global Energy and Water-Cycle Experiment (GEWEX) Continental-scale International Project (GCIP), a preliminary water and energy budget synthesis (WEBS) was developed for the period 1996–1999 from the “best available” observations and models. Besides this summary paper, a companion CD-ROM with more extensive discussion, figures, tables, and raw data is available to the interested researcher from the GEWEX project office, the GAPP project office, or the first author. An updated online version of the CD-ROM is also available at http://ecpc.ucsd.edu/gcip/webs.htm/. Observations cannot adequately characterize or “close” budgets since too many fundamental processes are missing. Models that properly represent the many complicated atmospheric and near-surface interactions are also required. This preliminary synthesis therefore included a representative global general circulation model, regional climate model, and a macroscale hydrologic model as well as a global reanalysis and a regional analysis. By the qualitative agreement among the models and available observations, it did appear that we now qualitatively understand water and energy budgets of the Mississippi River Basin. However, there is still much quantitative uncertainty. In that regard, there did appear to be a clear advantage to using a regional analysis over a global analysis or a regional simulation over a global simulation to describe the Mississippi River Basin water and energy budgets. There also appeared to be some advantage to using a macroscale hydrologic model for at least the surface water budgets

    A Gaseous Argon-Based Near Detector to Enhance the Physics Capabilities of DUNE

    Get PDF
    This document presents the concept and physics case for a magnetized gaseous argon-based detector system (ND-GAr) for the Deep Underground Neutrino Experiment (DUNE) Near Detector. This detector system is required in order for DUNE to reach its full physics potential in the measurement of CP violation and in delivering precision measurements of oscillation parameters. In addition to its critical role in the long-baseline oscillation program, ND-GAr will extend the overall physics program of DUNE. The LBNF high-intensity proton beam will provide a large flux of neutrinos that is sampled by ND-GAr, enabling DUNE to discover new particles and search for new interactions and symmetries beyond those predicted in the Standard Model

    Snowmass Neutrino Frontier: DUNE Physics Summary

    Get PDF
    The Deep Underground Neutrino Experiment (DUNE) is a next-generation long-baseline neutrino oscillation experiment with a primary physics goal of observing neutrino and antineutrino oscillation patterns to precisely measure the parameters governing long-baseline neutrino oscillation in a single experiment, and to test the three-flavor paradigm. DUNE's design has been developed by a large, international collaboration of scientists and engineers to have unique capability to measure neutrino oscillation as a function of energy in a broadband beam, to resolve degeneracy among oscillation parameters, and to control systematic uncertainty using the exquisite imaging capability of massive LArTPC far detector modules and an argon-based near detector. DUNE's neutrino oscillation measurements will unambiguously resolve the neutrino mass ordering and provide the sensitivity to discover CP violation in neutrinos for a wide range of possible values of ÎŽCP. DUNE is also uniquely sensitive to electron neutrinos from a galactic supernova burst, and to a broad range of physics beyond the Standard Model (BSM), including nucleon decays. DUNE is anticipated to begin collecting physics data with Phase I, an initial experiment configuration consisting of two far detector modules and a minimal suite of near detector components, with a 1.2 MW proton beam. To realize its extensive, world-leading physics potential requires the full scope of DUNE be completed in Phase II. The three Phase II upgrades are all necessary to achieve DUNE's physics goals: (1) addition of far detector modules three and four for a total FD fiducial mass of at least 40 kt, (2) upgrade of the proton beam power from 1.2 MW to 2.4 MW, and (3) replacement of the near detector's temporary muon spectrometer with a magnetized, high-pressure gaseous argon TPC and calorimeter

    A Gaseous Argon-Based Near Detector to Enhance the Physics Capabilities of DUNE

    Full text link
    This document presents the concept and physics case for a magnetized gaseous argon-based detector system (ND-GAr) for the Deep Underground Neutrino Experiment (DUNE) Near Detector. This detector system is required in order for DUNE to reach its full physics potential in the measurement of CP violation and in delivering precision measurements of oscillation parameters. In addition to its critical role in the long-baseline oscillation program, ND-GAr will extend the overall physics program of DUNE. The LBNF high-intensity proton beam will provide a large flux of neutrinos that is sampled by ND-GAr, enabling DUNE to discover new particles and search for new interactions and symmetries beyond those predicted in the Standard Model.Comment: Contribution to Snowmass 202