1,868 research outputs found

    Extreme Mass Ratio Binary: Radiation reaction and gravitational waveform

    Get PDF
    For a successful detection of gravitational waves by LISA, it is essential to construct theoretical waveforms in a reliable manner. We discuss gravitational waves from an extreme mass ratio binary system which is expected to be a promising target of the LISA project. The extreme mass ratio binary is a binary system of a supermassive black hole and a stellar mass compact object. As the supermassive black hole dominates the gravitational field of the system, we suppose that the system might be well approximated by a metric perturbation of a Kerr black hole. We discuss a recent theoretical progress in calculating the waveforms from such a system.Comment: Classical and Quantum Gravity 22 (2005) S375-S379, Proceedings for 5th International LISA Symposiu

    From the self-force problem to the Radiation reaction formula

    Get PDF
    We review a recent theoretical progress in the so-called self-force problem of a general relativistic two-body system. Although a two-body system in Newtonian gravity is a very simple problem, some fundamental issues are involved in relativistic gravity. Besides, because of recent projects for gravitational wave detection, it comes to be possible to see those phenomena directly via gravitational waves, and the self-force problem becomes one of urgent and highly-motivated problems in general relativity. Roughly speaking, there are two approaches to investigate this problem; the so-called post-Newtonian approximation, and a black hole perturbation. In this paper, we review a theoretical progress in the self-force problem using a black hole perturbation. Although the self-force problem seems to be just a problem to calculate a self-force, we discuss that the real problem is to define a gauge invariant concept of a motion in a gauge dependent metric perturbation.Comment: a special issue for Classical and Quantum Gravity, a review article of Capra Ranch Meeting

    Perturbative Approach to an orbital evolution around a Supermassive black hole

    Get PDF
    A charge-free, point particle of infinitesimal mass orbiting a Kerr black hole is known to move along a geodesic. When the particle has a finite mass or charge, it emits radiation which carries away orbital energy and angular momentum, and the orbit deviates from a geodesic. In this paper we assume that the deviation is small and show that the half-advanced minus half-retarded field surprisingly provides the correct radiation reaction force, in a time-averaged sense, and determines the orbit of the particle.Comment: accepted for publication in the Physical Revie

    Assessment of Biology Majors’ Versus Nonmajors’ Views on Evolution, Creationism, and Intelligent Design

    Get PDF
    The controversy around evolution, creationism, and intelligent design resides in a historical struggle between scientific knowledge and popular belief. Four hundred seventy-six students (biology majors n=237, nonmajors n=239) at a secular liberal arts private university in Northeastern United States responded to a five-question survey to assess their views about: (1) evolution, creationism, and intelligent design in the science class; (2) students’ attitudes toward evolution; (3) students’ position about the teaching of human evolution; (4) evolution in science exams; and (5) students’ willingness to discuss evolution openly. There were 60.6% of biology majors and 42% of nonmajors supported the exclusive teaching of evolution in the science class, while 45.3% of nonmajors and 32% of majors were willing to learn equally about evolution, creationism, and intelligent design (question 1); 70.5% of biology majors and 55.6% of nonmajors valued the factual explanations evolution provides about the origin of life and its place in the universe (question 2); 78% of the combined responders (majors plus nonmajors) preferred science courses where evolution is discussed comprehensively and humans are part of it (question 3); 69% of the combined responders (majors plus nonmajors) had no problem answering questions concerning evolution in science exams (question 4); 48.1% of biology majors and 26.8% of nonmajors accepted evolution and expressed it openly, but 18.2% of the former and 14.2% of the latter accepted evolution privately; 46% of nonmajors and 29.1% of biology majors were reluctant to comment on this topic (question 5). Combined open plus private acceptance of evolution within biology majors increased with seniority, from freshman (60.7%) to seniors (81%), presumably due to gradual exposure to upper-division biology courses with evolutionary content. College curricular/pedagogical reform should fortify evolution literacy at all education levels, particularly among nonbiologists

    Integrating Horizontal Gene Transfer and Common Descent to Depict Evolution and Contrast It with ‘‘Common Design

    Get PDF
    Horizontal gene transfer (HGT) and common descent interact in space and time. Because events of HGT co-occur with phylogenetic evolution, it is difficult to depict evolutionary patterns graphically. Tree-like representations of life’s diversification are useful, but they ignore the significance of HGT in evolutionary history, particularly of unicellular organisms, ancestors of multicellular life. Here we integrate the reticulated-tree model, ring of life, symbiogenesis whole-organism model, and eliminative pattern pluralism to represent evolution. Using Entamoeba histolytica alcohol dehydrogenase 2 (EhADH2), a bifunctional enzyme in the glycolytic pathway of amoeba, we illustrate how EhADH2 could be the product of both horizontally acquired features from ancestral prokaryotes (i.e. aldehyde dehydrogenase [ALDH] and alcohol dehydrogenase [ADH]), and subsequent functional integration of these enzymes into EhADH2, which is now inherited by amoeba via common descent. Natural selection has driven the evolution of EhADH2 active sites, which require specific amino acids (cysteine 252 in the ALDH domain; histidine 754 in the ADH domain), iron- and NAD1 as cofactors, and the substrates acetyl-CoA for ALDH and acetaldehyde for ADH. Alternative views invoking ‘‘common design’’ (i.e. the non-naturalistic emergence of major taxa independent from ancestry) to explain the interaction between horizontal and vertical evolution are unfounded

    Acceptance of Evolution Increases with Student Academic Level: A Comparison Between a Secular and a Religious College

    Get PDF
    Acceptance of evolution among the general public, high schools, teachers, and scientists has been documented in the USA; little is known about college students’ views on evolution; this population is relevant since it transits from a high-school/parent-protective environment to an independent role in societal decisions. Here we compare perspectives about evolution, creationism, and intelligent design (ID) between a secular (S) and a religious (R) college in the Northeastern USA. Interinstitutional comparisons showed that 64% (mean S + R) biology majors vs. 42/62% (S/R) nonmajors supported the exclusive teaching of evolution in science classes; 24/29% (S/R) biology majors vs. 26/38% (S/R) nonmajors perceived ID as both alternative to evolution and/or scientific theory about the origin of life; 76% (mean S + R) biology majors and nonmajors accepted evolutionary explanations about the origin of life; 86% (mean S + R) biology majors vs. 79% (mean S + R) nonmajors preferred science courses where human evolution is discussed; 76% (mean S+R) biology majors vs. 79% (mean S + R) nonmajors welcomed questions about evolution in exams and/or thought that such questions should always be in exams; and 66% (mean S + R) biology majors vs. 46% (mean S + R) nonmajors admitted they accept evolution openly and/or privately. Intrainstitutional comparisons showed that overall acceptance of evolution among biologists (S or R) increased gradually from the freshman to the senior year, due to exposure to upper-division courses with evolutionary content. College curricular/pedagogical reform should fortify evolution literacy at all education levels, particularly among nonbiologists

    Gravitational Radiation from Plunging Orbits - Perturbative Study -

    Get PDF
    Numerical relativity has recently yielded a plethora of results about kicks from spinning mergers which has, in turn, vastly increased our knowledge about the spin interactions of black hole systems. In this work we use black hole perturbation theory to calculate accurately the gravitational waves emanating from the end of the plunging stage of an extreme mass ratio merger in order to further understand this phenomenon. This study focuses primarily on spin induced effects with emphasis on the maximally spinning limit and the identification of possible causes of generic behavior. We find that gravitational waves emitted during the plunging phase exhibit damped oscillatory behavior, corresponding to a coherent excitation of quasi-normal modes by the test particle. This feature is universal in the sense that the frequencies and damping time do not depend on the orbital parameters of the plunging particle. Furthermore, the observed frequencies are distinct from those associated with the usual free quasi-normal ringing. Our calculation suggests that a maximum in radiated energy and momentum occurs at spin parameters equal to a/M=0.86a/M=0.86 and a/M=0.81a/M=0.81, respectively for the plunge stage of a polar orbit. The dependence of linear momentum emission on the angle at which a polar orbit impacts the horizon is quantified. One of the advantages of the perturbation approach adopted here is that insight into the actual mechanism of radiation emission and its relationship to black hole ringing is obtained by carefully identifying the dominant terms in the expansions used

    An Exploratory Study of Nucleon-Nucleon Scattering Lengths in Lattice QCD

    Get PDF
    An exploratory study is made of the nucleon-nucleon ss-wave scattering lengths in quenched lattice QCD with the Wilson quark action. The π\pi-NN and π\pi-π\pi scattering lengths are also calculated for comparison. The calculations are made with heavy quarks corresponding to mπ/mρ0.730.95m_\pi/m_\rho\approx 0.73-0.95. The results show that the NN-NN system has an attractive force in both spin-singlet and triplet channels, with their scattering lengths significantly larger than those for the π\pi-NN and π\pi-π\pi cases, a trend which is qualitatively consistent with the experiment. Problems toward a more realistic calculation for light quarks are discussed.Comment: 9 pages. Latex file. Figures are also included as ps file

    Gauge Problem in the Gravitational Self-Force II. First Post Newtonian Force under Regge-Wheeler Gauge

    Full text link
    We discuss the gravitational self-force on a particle in a black hole space-time. For a point particle, the full (bare) self-force diverges. It is known that the metric perturbation induced by a particle can be divided into two parts, the direct part (or the S part) and the tail part (or the R part), in the harmonic gauge, and the regularized self-force is derived from the R part which is regular and satisfies the source-free perturbed Einstein equations. In this paper, we consider a gauge transformation from the harmonic gauge to the Regge-Wheeler gauge in which the full metric perturbation can be calculated, and present a method to derive the regularized self-force for a particle in circular orbit around a Schwarzschild black hole in the Regge-Wheeler gauge. As a first application of this method, we then calculate the self-force to first post-Newtonian order. We find the correction to the total mass of the system due to the presence of the particle is correctly reproduced in the force at the Newtonian order.Comment: Revtex4, 43 pages, no figure. Version to be published in PR

    Self-Force on a Scalar Charge in Circular Orbit around a Schwarzschild Black Hole

    Get PDF
    In an accompanying paper, we have formulated two types of regulariz_ation methods to calculate the scalar self-force on a particle of charge qq moving around a black hole of mass MM, one of which is called the ``power expansion regularization''. In this paper, we analytically evaluate the self-force (which we also call the reaction force) to the third post-Newtonian (3PN) order on the scalar particle in circular orbit around a Schwarzschild black hole by using the power expansion regularization. It is found that the rr-component of the self-force arises at the 3PN order, whereas the tt- and ϕ\phi-components, which are due to the radiation reaction, appear at the 2PN and 1.5PN orders, respectively
    corecore