404 research outputs found

    Neutron cross sections in stellar nucleosynthesis: Study of the key isotope 25Mg

    Get PDF
    In this document the important role of 25Mg within nucleosynthesis processes is studied. In fact the initial conditions of s-process in massive and AGB stars depend on neutron-induced reactions on 25Mg, being this isotope involved both in neutron production and as a neutron poison. Because of the importance of 25Mg, very accurate and precise measurements of its capture cross section, at the n TOF CERN facility, and of its total cross section, at the EC-JRC-IRMM facility in Belgium, were performed. The aims of these measurements are both to weight the contribution of 25Mg as a neutron poison and to give constraints for the reaction rate of one of the main neutron sources for the s-process

    High precision measurement of the radiative capture cross section of 238U at the n-TOF CERN facility

    Get PDF
    The importance of improving the accuracy on the capture cross-section of 238U has been addressed by the Nuclear Energy Agency, since its uncertainty significantly affects the uncertainties of key design parameters for both fast and thermal nuclear reactors. Within the 7th framework programme ANDES of the European Commission three different measurements have been carried out with the aim of providing the 238U(n,Îł) cross-section with an accuracy which varies from 1 to 5%, depending on the energy range. Hereby the final results of the measurement performed at the n TOF CERN facility in a wide energy range from 1 eV to 700 keV will be presented

    Ni-62(n,gamma) and Ni-63(n,gamma) cross sections measured at the n_TOF facility at CERN

    Get PDF
    The cross section of the Ni-62(n,gamma) reaction was measured with the time-of-flight technique at the neutron time-of-flight facility n_TOF at CERN. Capture kernels of 42 resonances were analyzed up to 200 keV neutron energy and Maxwellian averaged cross sections (MACS) from kT = 5-100 keV were calculated. With a total uncertainty of 4.5%, the stellar cross section is in excellent agreement with the the KADoNiS compilation at kT = 30 keV, while being systematically lower up to a factor of 1.6 at higher stellar temperatures. The cross section of the Ni-63(n,gamma) reaction was measured for the first time at n_TOF. We determined unresolved cross sections from 10 to 270 keV with a systematic uncertainty of 17%. These results provide fundamental constraints on s-process production of heavier species, especially the production of Cu in massive stars, which serve as the dominant source of Cu in the solar system.Peer reviewedFinal Accepted Versio

    Measurement of 73 Ge(n,Îł) cross sections and implications for stellar nucleosynthesis

    Get PDF
    © 2019 The Author(s). Published by Elsevier B.V.73 Ge(n,γ) cross sections were measured at the neutron time-of-flight facility n_TOF at CERN up to neutron energies of 300 keV, providing for the first time experimental data above 8 keV. Results indicate that the stellar cross section at kT=30 keV is 1.5 to 1.7 times higher than most theoretical predictions. The new cross sections result in a substantial decrease of 73 Ge produced in stars, which would explain the low isotopic abundance of 73 Ge in the solar system.Peer reviewe

    Measurement of the 240Pu(n,f) cross-section at the CERN n-TOF facility : First results from experimental area II (EAR-2)

    Get PDF
    The accurate knowledge of the neutron-induced fission cross-sections of actinides and other isotopes involved in the nuclear fuel cycle is essential for the design of advanced nuclear systems, such as Generation-IV nuclear reactors. Such experimental data can also provide the necessary feedback for the adjustment of nuclear model parameters used in the evaluation process, resulting in the further development of nuclear fission models. In the present work, the 240Pu(n,f) cross-section was measured at CERN's n-TOF facility relative to the well-known 235U(n,f) cross section, over a wide range of neutron energies, from meV to almost MeV, using the time-of-flight technique and a set-up based on Micromegas detectors. This measurement was the first experiment to be performed at n-TOF's new experimental area (EAR-2), which offers a significantly higher neutron flux compared to the already existing experimental area (EAR-1). Preliminary results as well as the experimental procedure, including a description of the facility and the data handling and analysis, are presented

    High-accuracy determination of the U 238 / U 235 fission cross section ratio up to ≈1 GeV at n-TOF at CERN

    Get PDF
    Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOIThe U238 to U235 fission cross section ratio has been determined at n-TOF up to ≈1 GeV, with two different detection systems, in different geometrical configurations. A total of four datasets has been collected and compared. They are all consistent to each other within the relative systematic uncertainty of 3-4%. The data collected at n-TOF have been suitably combined to yield a unique fission cross section ratio as a function of neutron energy. The result confirms current evaluations up to 200 MeV. Good agreement is also observed with theoretical calculations based on the INCL++/Gemini++ combination up to the highest measured energy. The n-TOF results may help solve a long-standing discrepancy between the two most important experimental datasets available so far above 20 MeV, while extending the neutron energy range for the first time up to ≈1 GeV.Peer reviewedFinal Published versio

    The nucleosynthesis of heavy elements in Stars : The key isotope 25Mg

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly citedWe have measured the radiative neutron-capture cross section and the total neutron-induced cross section of one of the most important isotopes for the s process, the 25Mg. The measurements have been carried out at the neutron time-of-flight facilities n-TOF at CERN (Switzerland) and GELINA installed at the EC-JRC-IRMM (Belgium). The cross sections as a function of neutron energy have been measured up to approximately 300 keV, covering the energy region of interest to the s process. The data analysis is ongoing and preliminary results show the potential relevance for the s process.Peer reviewe

    The 33S(n,α)30Si cross section measurement at n-TOF-EAR2 (CERN) : From 0.01 eV to the resonance region

    Get PDF
    The 33S(n,α)30Si cross section measurement, using 10B(n,α) as reference, at the n-TOF Experimental Area 2 (EAR2) facility at CERN is presented. Data from 0.01 eV to 100 keV are provided and, for the first time, the cross section is measured in the range from 0.01 eV to 10 keV. These data may be used for a future evaluation of the cross section because present evaluations exhibit large discrepancies. The 33S(n,α)30Si reaction is of interest in medical physics because of its possible use as a cooperative target to boron in Neutron Capture Therapy (NCT)

    Radiative neutron capture cross-section measurement of ge isotopes at n_TOF CERN facility and its importance for stellar nucleosynthesis

    Get PDF
    This manuscript summarizes the results of radiative neutron capture cross-section measurements on two stable germanium isotopes, 70Ge and 73Ge. Experiments were performed at the n_TOF facility at CERN via the time-of-flight technique, over a wide neutron energy range, for all stable germanium isotopes (70,72,73,74, and 76). Results for 70Ge [Phys. Rev. C 100, 045804 (2019)] and 73Ge [Phys. Lett. B 790, 458 (2019)] are already published. In the field of nuclear structure, such measurements allow to study excited levels close to the neutron binding energy and to obtain information on nuclear properties. In stellar nucleosynthesis research, neutron induced reactions on germanium are of importance for nucleosynthesis in the weak component of the slow neutron capture processes.Peer ReviewedArticle signat per 134 autors/autores: A. Gawlik, C. Lederer-Woods, J. Andrzejewski, J. Perkowski, U. Battino, P. Ferreira, F. Gunsing, S. Heinitz, M. Krtička, C. Massimi, F. Mingrone, R. Reifarth, A. Tattersall, S. Valenta, C. Weiss, O. Aberle, L. Audouin, M. Bacak, J. Balibrea, M. Barbagallo, S. Barros, V. BĂ©cares, F. Bečváƙ, C. Beinrucker, E. Berthoumieux, J. Billowes, D. Bosnar, M. Brugger, M. Caamaño, F. Calviño, M. Calviani, D. Cano-Ott, R. Cardella, A. Casanovas, D.M. Castelluccio, F. Cerutti, Y.H. Chen, E. Chiaveri, N. Colonna, G. CortĂ©s, M.A. CortĂ©s-Giraldo, L. Cosentino, L.A. Damone, M. Diakaki, M. Dietz, C. Domingo-Pardo, R. Dressler, E. Dupont, I. DurĂĄn, B. FernĂĄndez-DomĂ­nguez, A. Ferrari, P. Finocchiaro, V. Furman, K. Göbel, A.R. GarcĂ­a, T. Glodariu, I.F. Gonçalves, E. GonzĂĄlez-Romero, A. Goverdovski, E. Griesmayer, C. Guerrero, H. Harada, T. Heftrich, J. Heyse, D.G. Jenkins, E. Jericha, F. KĂ€ppeler, Y. Kadi, T. Katabuchi, P. Kavrigin, V. Ketlerov, V. Khryachkov, A. Kimura, N. Kivel, I. Knapova, M. Kokkoris, E. Leal-Cidoncha, H. Leeb, J. Lerendegui-Marco, S. Lo Meo, S.J. Lonsdale, R. Losito, D. Macina, T. MartĂ­nez, P. Mastinu, M. Mastromarco, F. Matteucci, E.A. Maugeri, E. Mendoza, A. Mengoni, P.M. Milazzo, M. Mirea, S. Montesano, A. Musumarra, R. Nolte, A. Oprea, N. Patronis, A. Pavlik, J.I. Porras, J. Praena, J.M. Quesada, K. Rajeev, T. Rauscher, A. Riego-Perez, P.C. Rout, C. Rubbia, J.A. Ryan, M. SabatĂ©-Gilarte, A. Saxena, P. Schillebeeckx, S. Schmidt, D. Schumann, P. Sedyshev, A.G. Smith, A. Stamatopoulos, G. Tagliente, J.L. Tain, A. Tarifeño-Saldivia, L. Tassan-Got, A. Tsinganis, G. Vannini, V. Variale, P. Vaz, A. Ventura, V. Vlachoudis, R. Vlastou, A. Wallner, S. Warren, M. Weigand, C. Wolf, P.J. Woods, T. Wright, P. ĆœugecObjectius de Desenvolupament Sostenible::7 - Energia Assequible i No ContaminantPostprint (author's final draft
    • 

    corecore