13 research outputs found

    Application of metal, metal-oxide, and silicon-oxide based intermediate reflective layers for current matching in autonomous high-voltage multijunction photovoltaic devices

    No full text
    A logical next step for achieving a cost price reduction per Watt peak of photovoltaics (PV) is multijunction PV devices. In two-terminal multijunction PV devices, the photo-current generated in each subcell should be matched. Intermediate reflective layers (IRLs) are widely employed in multijunction devices to increase reflection at the interface between subcells to enhance current generation in the subcell(s) positioned before the IRL, in reference to the incident light. In this work, the results of over 65 multijunction devices are presented, in order to explore the effect of different current matching approaches. The influence of variations in absorber thickness as well as thickness variations of different IRLs based on silicon-oxide, various transparent conductive oxides (TCO), and metallic layers on all-silicon multijunction PV devices is studied. Specifically, hybrid, 2-terminal, monolithically integrated silicon heterojunction (SHJ) and thin film nanocrystalline silicon (nc-Si:H) and amorphous silicon (a-Si:H) tandem and triple junction devices are processed. Based on these experiments, certain design rules for optimal current matching operation in multijunction devices are formulated. Finally, taking these design rules into account, record all-silicon multijunction devices are processed. Conversion efficiencies close 15% and (Formula presented.) V are demonstrated for triple junction SHJ/nc-Si:H/a-Si:H devices. Such conversion efficiencies for a wireless, high-voltage wafer-based all-silicon 2-terminal multijunction PV device opens the way for efficient autonomous solar-to-fuel synthesis systems as well as other wireless innovative approaches in which the multijunction solar cell is used not only as a photovoltaic current-voltage generator, but also as an ion-exchange membrane, electrochemical catalysts, and/or optical transmittance filter.Photovoltaic Materials and Device

    Felix Based Readout of The Single-Phase Protodune Detector

    Get PDF
    The liquid argon Time Projection Chamber technique has matured and is now in use by several short-baseline neutrino experiments. This technology will be used in the long-baseline DUNE experiment; however, this experiment represents a large increase in scale, for which the technology needs to be validated explicitly. To this end, both the single-phase and dual-phase implementations of the technology are being tested at CERN in two full-scale (10 × 10 × 10 m3) ProtoDUNE setups. Besides the detector technology, these setups also allow for extensive tests of readout strategies. The Front-End LInk eXchange (FELIX) system was initially developed within the ATLAS collaboration and is based on custom FPGA-based PCIe I/O cards in combination with commodity servers. FELIX will be used in the single-phase ProtoDUNE setup to read the data coming from 2560 anode wires organized in a single Anode Plane Assembly structure. With a sampling rate of 2 MHz, the system must buffer and process an input rate of 74 Gb/s. Event building requests will arrive at a target rate of 25 Hz, and loss-less compression must reduce the data within the requested time windows before it is sent to the experiment’s event building farm. This paper discusses the design of the system as well as first operational experiences

    Effects of potent neutralizing antibodies from convalescent plasma in patients hospitalized for severe SARS-CoV-2 infection

    Get PDF
    In a randomized clinical trial of 86 hospitalized COVID-19 patients comparing standard care to treatment with 300mL convalescent plasma containing high titers of neutralizing SARS-CoV-2 antibodies, no overall clinical benefit was observed. Using a comprehensive translational approach, we unravel the virological and immunological responses following treatment to disentangle which COVID-19 patients may benefit and should be the focus of future studies. Convalescent plasma is safe, does not improve survival, has no effect on the disease course, nor does plasma enhance viral clearance in the respiratory tract, influence SARS-CoV-2 antibody development or serum proinflammatory cytokines levels. Here, we show that the vast majority of patients already had potent neutralizing SARS-CoV-2 antibodies at hospital admission and with comparable titers to carefully selected plasma donors. This resulted in the decision to terminate the trial prematurely. Treatment with convalescent plasma should be studied early in the disease course or at least preceding autologous humoral response development

    Effects of potent neutralizing antibodies from convalescent plasma in patients hospitalized for severe SARS-CoV-2 infection

    No full text
    In a randomized clinical trial of 86 hospitalized COVID-19 patients comparing standard care to treatment with 300mL convalescent plasma containing high titers of neutralizing SARS-CoV-2 antibodies, no overall clinical benefit was observed. Using a comprehensive translational approach, we unravel the virological and immunological responses following treatment to disentangle which COVID-19 patients may benefit and should be the focus of future studies. Convalescent plasma is safe, does not improve survival, has no effect on the disease course, nor does plasma enhance viral clearance in the respiratory tract, influence SARS-CoV-2 antibody development or serum proinflammatory cytokines levels. Here, we show that the vast majority of patients already had potent neutralizing SARS-CoV-2 antibodies at hospital admission and with comparable titers to carefully selected plasma donors. This resulted in the decision to terminate the trial prematurely. Treatment with convalescent plasma should be studied early in the disease course or at least preceding autologous humoral response development

    Effects of potent neutralizing antibodies from convalescent plasma in patients hospitalized for severe SARS-CoV-2 infection

    No full text
    In a randomized clinical trial of 86 hospitalized COVID-19 patients comparing standard care to treatment with 300mL convalescent plasma containing high titers of neutralizing SARS-CoV-2 antibodies, no overall clinical benefit was observed. Using a comprehensive translational approach, we unravel the virological and immunological responses following treatment to disentangle which COVID-19 patients may benefit and should be the focus of future studies. Convalescent plasma is safe, does not improve survival, has no effect on the disease course, nor does plasma enhance viral clearance in the respiratory tract, influence SARS-CoV-2 antibody development or serum proinflammatory cytokines levels. Here, we show that the vast majority of patients already had potent neutralizing SARS-CoV-2 antibodies at hospital admission and with comparable titers to carefully selected plasma donors. This resulted in the decision to terminate the trial prematurely. Treatment with convalescent plasma should be studied early in the disease course or at least preceding autologous humoral response development.</p

    Pharmacological recanalization therapy in acute ischemic stroke – Evolution, current state and perspectives of intravenous and intra-arterial thrombolysis

    No full text

    Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume I Introduction to DUNE

    No full text
    International audienceThe preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. This TDR is intended to justify the technical choices for the far detector that flow down from the high-level physics goals through requirements at all levels of the Project. Volume I contains an executive summary that introduces the DUNE science program, the far detector and the strategy for its modular designs, and the organization and management of the Project. The remainder of Volume I provides more detail on the science program that drives the choice of detector technologies and on the technologies themselves. It also introduces the designs for the DUNE near detector and the DUNE computing model, for which DUNE is planning design reports. Volume II of this TDR describes DUNE's physics program in detail. Volume III describes the technical coordination required for the far detector design, construction, installation, and integration, and its organizational structure. Volume IV describes the single-phase far detector technology. A planned Volume V will describe the dual-phase technology

    Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume II: DUNE Physics

    No full text
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay -- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. DUNE is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume II of this TDR, DUNE Physics, describes the array of identified scientific opportunities and key goals. Crucially, we also report our best current understanding of the capability of DUNE to realize these goals, along with the detailed arguments and investigations on which this understanding is based. This TDR volume documents the scientific basis underlying the conception and design of the LBNF/DUNE experimental configurations. As a result, the description of DUNE's experimental capabilities constitutes the bulk of the document. Key linkages between requirements for successful execution of the physics program and primary specifications of the experimental configurations are drawn and summarized. This document also serves a wider purpose as a statement on the scientific potential of DUNE as a central component within a global program of frontier theoretical and experimental particle physics research. Thus, the presentation also aims to serve as a resource for the particle physics community at large

    Deep Underground Neutrino Experiment (DUNE) Near Detector Conceptual Design Report

    No full text
    International audienceThe Deep Underground Neutrino Experiment (DUNE) is an international, world-class experiment aimed at exploring fundamental questions about the universe that are at the forefront of astrophysics and particle physics research. DUNE will study questions pertaining to the preponderance of matter over antimatter in the early universe, the dynamics of supernovae, the subtleties of neutrino interaction physics, and a number of beyond the Standard Model topics accessible in a powerful neutrino beam. A critical component of the DUNE physics program involves the study of changes in a powerful beam of neutrinos, i.e., neutrino oscillations, as the neutrinos propagate a long distance. The experiment consists of a near detector, sited close to the source of the beam, and a far detector, sited along the beam at a large distance. This document, the DUNE Near Detector Conceptual Design Report (CDR), describes the design of the DUNE near detector and the science program that drives the design and technology choices. The goals and requirements underlying the design, along with projected performance are given. It serves as a starting point for a more detailed design that will be described in future documents
    corecore